PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.
Output Specification:
Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.
Sample Input:
6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6
Sample Output:
3 4
题意:
做这题之前首先要先去了解什么是拓扑排序,可以参考https://blog.csdn.net/qq_35644234/article/details/60578189
给出一个图,再给几组数据,让你判断这几组数据是否符合拓扑排序
题解:
保存入度数和出度的节点。用一个数组来统计每个点的入度,vector保存出度的节点,然后就可以开始判断。在判断的时候,将与这个点去掉,就是指这个点连接的所有点的入度都减了1。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int n,m,u,v;
int in[],inx[];
vector<int>out[];
int main(){
cin>>n>>m;
memset(in,,sizeof(in));
for(int i=;i<=m;i++){
cin>>u>>v;
out[u].push_back(v);//保存出去的节点
in[v]++; //计算入度
}
int k;
cin>>k;
int a[];
int num=;
for(int i=;i<k;i++){
int f=;
memcpy(inx, in, sizeof(in));//将in拷贝给inx
for(int j=;j<=n;j++){
cin>>u;
if(inx[u]!=||f==){
f=;
continue;
}
for(int p=;p<out[u].size();p++){//对受影响的节点的入度--
inx[out[u].at(p)]--;
}
}
if(!f){
a[++num]=i;
}
}
for(int i=;i<=num;i++){
cout<<a[i];
if(i!=num) cout<<" ";
}
return ;
}
PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)的更多相关文章
- PAT甲级——1146 Topological Order (25分)
This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...
- PAT 甲级 1146 Topological Order
https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760 This is a problem give ...
- PAT 甲级 1048 Find Coins (25 分)(较简单,开个数组记录一下即可)
1048 Find Coins (25 分) Eva loves to collect coins from all over the universe, including some other ...
- PAT 甲级 1037 Magic Coupon (25 分) (较简单,贪心)
1037 Magic Coupon (25 分) The magic shop in Mars is offering some magic coupons. Each coupon has an ...
- PAT 甲级 1020 Tree Traversals (25分)(后序中序链表建树,求层序)***重点复习
1020 Tree Traversals (25分) Suppose that all the keys in a binary tree are distinct positive intege ...
- PAT 甲级 1059 Prime Factors (25 分) ((新学)快速质因数分解,注意1=1)
1059 Prime Factors (25 分) Given any positive integer N, you are supposed to find all of its prime ...
- PAT 甲级 1051 Pop Sequence (25 分)(模拟栈,较简单)
1051 Pop Sequence (25 分) Given a stack which can keep M numbers at most. Push N numbers in the ord ...
- PAT 甲级 1028 List Sorting (25 分)(排序,简单题)
1028 List Sorting (25 分) Excel can sort records according to any column. Now you are supposed to i ...
- PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)
1021 Deepest Root (25 分) A graph which is connected and acyclic can be considered a tree. The heig ...
随机推荐
- 九.Protobuf3特殊类型
Protobuf3 Any类型 Any消息类型允许您将消息作为嵌入类型,而不需要它们 .proto定义.Any包含任意序列化的消息(字节),以及一个URL,该URL充当该消息的全局唯一标识符并解析为该 ...
- navicat连接oracle报错:ORA-12737 Instant Client Light:unsupported server character set ZHS16GBK
今天使用Navicat连接Oracle数据库,报了下面的这个错误:“ORA-12737 Instant Client Light:unsupported server character set ZH ...
- MySQL 是怎么保证数据一致性的(转载)
在<写数据库同时发mq消息事务一致性的一种解决方案>一文的方案中把分布式事务巧妙转成了数据库事务.我们都知道关系型数据库事务能保证数据一致性,那数据库到底是怎么设计事务这一特性的呢? 一. ...
- 阿里开源线上应用调试利器 Arthas的背后
Arthas是一个功能非常强大的诊断工具,功能点很多,例如:jvm信息.线程信息.搜索类中的方法.跟踪代码执行.观测方法的入参和返回参数等等. 作为有追求的程序员,你不仅要知道它能做什么,更要思考它是 ...
- C的realloc的动态分配扩展和缩小内存
#include <stdio.h> #include <stdlib.h> void out(int *p, int n){ int i; for(i=0;i<n;i+ ...
- UOJ310. 【UNR #2】黎明前的巧克力 [FWT]
UOJ 思路 显然可以转化一下,变成统计异或起来等于0的集合个数,这样一个集合的贡献是\(2^{|S|}\). 考虑朴素的\(dp_{i,j}\)表示前\(i\)个数凑出了\(j\)的方案数,发现这其 ...
- 【MySQL 读书笔记】“order by”是怎么工作的?
针对排序来说,order by 是我们使用非常频繁的关键字.结合之前我们对索引的了解再来看这篇文章会让我们深刻理解在排序的时候,是如何利用索引来达到少扫描表或者使用外部排序的. 先定义一个表辅助我们后 ...
- 【golang】使用rpcx不指定tags报错 undefined: serverplugin.ConsulRegisterPlugin
为了避免引入不必要的库, rpcx采用了 Go 条件编译 的特性, 你可以只引入必要的特性. 比如你只使用 etcd 作为注册中心的时候, 你不希望引入 consul.zookeeper相关的库,你需 ...
- golang-笔记2
结构体: 是一种数据 类型. type Person struct { —— 类型定义 (地位等价于 int byte bool string ....) 通常放在全局位置. name string ...
- 再做一遍floyed
#include<bits/stdc++.h> #define R register int using namespace std; const int inf=0x3f3f3f3f; ...