1146 Topological Order (25 分)
 

This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topological order obtained from the given directed graph? Now you are supposed to write a program to test each of the options.

Input Specification:

Each input file contains one test case. For each case, the first line gives two positive integers N (≤ 1,000), the number of vertices in the graph, and M (≤10,000), the number of directed edges. Then M lines follow, each gives the start and the end vertices of an edge. The vertices are numbered from 1 to N. After the graph, there is another positive integer K (≤ 100). Then K lines of query follow, each gives a permutation of all the vertices. All the numbers in a line are separated by a space.

Output Specification:

Print in a line all the indices of queries which correspond to "NOT a topological order". The indices start from zero. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line. It is graranteed that there is at least one answer.

Sample Input:

6 8
1 2
1 3
5 2
5 4
2 3
2 6
3 4
6 4
5
1 5 2 3 6 4
5 1 2 6 3 4
5 1 2 3 6 4
5 2 1 6 3 4
1 2 3 4 5 6

Sample Output:

3 4

题意:

做这题之前首先要先去了解什么是拓扑排序,可以参考https://blog.csdn.net/qq_35644234/article/details/60578189

给出一个图,再给几组数据,让你判断这几组数据是否符合拓扑排序

题解:

保存入度数和出度的节点。用一个数组来统计每个点的入度,vector保存出度的节点,然后就可以开始判断。在判断的时候,将与这个点去掉,就是指这个点连接的所有点的入度都减了1。

AC代码:

#include<bits/stdc++.h>
using namespace std;
int n,m,u,v;
int in[],inx[];
vector<int>out[];
int main(){
cin>>n>>m;
memset(in,,sizeof(in));
for(int i=;i<=m;i++){
cin>>u>>v;
out[u].push_back(v);//保存出去的节点
in[v]++; //计算入度
}
int k;
cin>>k;
int a[];
int num=;
for(int i=;i<k;i++){
int f=;
memcpy(inx, in, sizeof(in));//将in拷贝给inx
for(int j=;j<=n;j++){
cin>>u;
if(inx[u]!=||f==){
f=;
continue;
}
for(int p=;p<out[u].size();p++){//对受影响的节点的入度--
inx[out[u].at(p)]--;
}
}
if(!f){
a[++num]=i;
}
}
for(int i=;i<=num;i++){
cout<<a[i];
if(i!=num) cout<<" ";
}
return ;
}

PAT 甲级 1146 Topological Order (25 分)(拓扑较简单,保存入度数和出度的节点即可)的更多相关文章

  1. PAT甲级——1146 Topological Order (25分)

    This is a problem given in the Graduate Entrance Exam in 2018: Which of the following is NOT a topol ...

  2. PAT 甲级 1146 Topological Order

    https://pintia.cn/problem-sets/994805342720868352/problems/994805343043829760 This is a problem give ...

  3. PAT 甲级 1048 Find Coins (25 分)(较简单,开个数组记录一下即可)

    1048 Find Coins (25 分)   Eva loves to collect coins from all over the universe, including some other ...

  4. PAT 甲级 1037 Magic Coupon (25 分) (较简单,贪心)

    1037 Magic Coupon (25 分)   The magic shop in Mars is offering some magic coupons. Each coupon has an ...

  5. PAT 甲级 1020 Tree Traversals (25分)(后序中序链表建树,求层序)***重点复习

    1020 Tree Traversals (25分)   Suppose that all the keys in a binary tree are distinct positive intege ...

  6. PAT 甲级 1059 Prime Factors (25 分) ((新学)快速质因数分解,注意1=1)

    1059 Prime Factors (25 分)   Given any positive integer N, you are supposed to find all of its prime ...

  7. PAT 甲级 1051 Pop Sequence (25 分)(模拟栈,较简单)

    1051 Pop Sequence (25 分)   Given a stack which can keep M numbers at most. Push N numbers in the ord ...

  8. PAT 甲级 1028 List Sorting (25 分)(排序,简单题)

    1028 List Sorting (25 分)   Excel can sort records according to any column. Now you are supposed to i ...

  9. PAT 甲级 1021 Deepest Root (25 分)(bfs求树高,又可能存在part数part>2的情况)

    1021 Deepest Root (25 分)   A graph which is connected and acyclic can be considered a tree. The heig ...

随机推荐

  1. Linux PXE 网络装机

    一.基础网络建设 Linux配置静态IP-192.168.5.1 # vim /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 ONBOOT= ...

  2. Python凯撒密码和括号匹配

    1.凯撒密码: 除了特殊字符不转化,其余的按照规定经行转译,以下以a~z和A~Z的字符都进行转译. plaincode = input("")print(len(plaincode ...

  3. JavaScript基础——数组

    一 .数组的介绍 1.概念:数据的集合,任何数据都可以放在数组中 2.作用:可以同时操作多个数据 3.数组的创建: 字面量:var arr = [ ]; 构造函数:var arr = new Arra ...

  4. asp.net大文件分块上传断点续传demo

    IE的自带下载功能中没有断点续传功能,要实现断点续传功能,需要用到HTTP协议中鲜为人知的几个响应头和请求头. 一. 两个必要响应头Accept-Ranges.ETag 客户端每次提交下载请求时,服务 ...

  5. P5590 【赛车游戏】

    果然我还是太\(Naive\)了 首先有一些点/边其实是没有意义的,如果从1出发不能到该点或者从该点不能到n,这个点就可以不用管了.这个过程可以用正反两边\(dfs/bfs\)实现 然后删掉那些点之后 ...

  6. make和rpm的编译、打包总结

    1  make工具使用 1.1 makefile基本规则 Make工具最主要也是最基本的功能就是通过makefile文件来描述源程序之间的相互关系并自动维护编译工作. Makefile的规则: tar ...

  7. Jmeter 5.1实现图片上传接口测试

    背景: 项目过程中需要抓取接口进行图片上传的接口测试,所有上传功能大同小异,无非就是参数内容不同,此处记录一下,为其他上传做一些参考 1.通过fiddler抓取到的参数如下: Content-Disp ...

  8. 使用sqlyog连接 Mysql 出现1251错误

    错误如图所示: 错误详情信息: client does not support authentication protocol requested by server;consider upgradi ...

  9. weblogic介绍

    快速阅读 介绍weblogic中间件,以及自身架构和几个基本概念,如何下载,安装等后面再详细介绍 . 什么是weblogic WebLogic最早由 WebLogic Inc. 开发,后并入BEA 公 ...

  10. Nginx介绍和使用

    Nginx介绍和使用 一.介绍 Nginx是一个十分轻量级并且高性能HTTP和反向代理服务器,同样也是一个IMAP/POP3/SMTP代理服务器. 二.特性 HTTP服务器 反向代理服务器 简单的负载 ...