大数据hadoop与spark的区别

https://www.cnblogs.com/adnb34g/p/9233906.html

Posted on 2018-06-27 14:43 左手中倒影 阅读(1246) 评论(0) 编辑 收藏

学习hadoop已经有很长一段时间了,好像是二三月份的时候朋友给了一个国产Hadoop发行版下载地址,因为还是在学习阶段就下载了一个三节点的学习版玩一下。在研究、学习hadoop的朋友可以去找一下看看(发行版 大快DKhadoop,去大快的网站上应该可以下载到的。)

在学习hadoop的时候查询一些资料的时候经常会看到有比较hadoop和spark的,对于初学者来说难免会有点搞不清楚这二者到底有什么大的区别。我记得刚开始接触大数据这方面内容的时候,也就这个问题查阅了一些资料,在《FreeRCH大数据一体化开发框架》的这篇说明文档中有就Hadoop和spark的区别进行了简单的说明,但我觉得解释的也不是特别详细。我把个人认为解释的比较好的一个观点分享给大家:

它主要是从四个方面对Hadoop和spark进行了对比分析:

1、目的:首先需要明确一点,hadoophe spark 这二者都是大数据框架,即便如此二者各自存在的目的是不同的。Hadoop是一个分布式的数据基础设施,它是将庞大的数据集分派到由若干台计算机组成的集群中的多个节点进行存储。Spark是一个专门用来对那些分布式存储的大数据进行处理的工具,spark本身并不会进行分布式数据的存储。

2、两者的部署:Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算。所以使用Hadoop则可以抛开spark,而直接使用Hadoop自身的mapreduce完成数据的处理。Spark是不提供文件管理系统的,但也不是只能依附在Hadoop上,它同样可以选择其他的基于云的数据系统平台,但spark默认的一般选择的还是hadoop。

3、数据处理速度:Spark,拥有Hadoop、 MapReduce所具有能更好地适用于数据挖掘与机器学习等需要迭代的的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,

Spark 是一种与hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

4、数据安全恢复:Hadoop每次处理的后的数据是写入到磁盘上,所以其天生就能很有弹性的对系统错误进行处理;spark的数据对象存储在分布于数据集群中的叫做弹性分布式数据集中,这些数据对象既可以放在内存,也可以放在磁盘,所以spark同样可以完成数据的安全恢复。

[转帖]大数据hadoop与spark的区别的更多相关文章

  1. 大数据hadoop与spark的区别

    学习hadoop已经有很长一段时间了,好像是二三月份的时候朋友给了一个国产Hadoop发行版下载地址,因为还是在学习阶段就下载了一个三节点的学习版玩一下.在研究.学习hadoop的朋友可以去找一下看看 ...

  2. 成都大数据Hadoop与Spark技术培训班

    成都大数据Hadoop与Spark技术培训班   中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师 ...

  3. 大数据 Hadoop,Spark和Storm

    大数据(Big Data)   大数据,官方定义是指那些数据量特别大.数据类别特别复杂的数据集,这种数据集无法用传统的数据库进行存储,管理和处理.大数据的主要特点为数据量大(Volume),数据类别复 ...

  4. 大数据Hadoop与Spark学习经验谈

    昨晚听了下Hulu大数据基础架构组负责人–董西成的关于大数据学习方法的直播,挺有收获的,下面截取一些PPT的关键内容,希望对正在学习大数据的人有帮助. 现状是目前存在的问题,比如找百度.查书这种学习方 ...

  5. 大数据计算新贵Spark在腾讯雅虎优酷成功应用解析

    http://www.csdn.net/article/2014-06-05/2820089 摘要:MapReduce在实时查询和迭代计算上仍有较大的不足,目前,Spark由于其可伸缩.基于内存计算等 ...

  6. 大数据实时处理-基于Spark的大数据实时处理及应用技术培训

    随着互联网.移动互联网和物联网的发展,我们已经切实地迎来了一个大数据 的时代.大数据是指无法在一定时间内用常规软件工具对其内容进行抓取.管理和处理的数据集合,对大数据的分析已经成为一个非常重要且紧迫的 ...

  7. 大数据hadoop面试题2018年最新版(美团)

    还在用着以前的大数据Hadoop面试题去美团面试吗?互联网发展迅速的今天,如果不及时更新自己的技术库那如何才能在众多的竞争者中脱颖而出呢? 奉行着"吃喝玩乐全都有"和"美 ...

  8. 网易大数据平台的Spark技术实践

    网易大数据平台的Spark技术实践 作者 王健宗 网易的实时计算需求 对于大多数的大数据而言,实时性是其所应具备的重要属性,信息的到达和获取应满足实时性的要求,而信息的价值需在其到达那刻展现才能利益最 ...

  9. 大数据篇:Spark

    大数据篇:Spark Spark是什么 Spark是一个快速(基于内存),通用,可扩展的计算引擎,采用Scala语言编写.2009年诞生于UC Berkeley(加州大学伯克利分校,CAL的AMP实验 ...

随机推荐

  1. Redis哨兵日常实践

    一.日常操作 指定一个从做新主 有时候需要将当前主节点机器下线,并指定一个高一些性能的从节点接替 将其它从节点的slave-priority配置为0,然后在随意一台 Setinel 执行sentine ...

  2. SQL中的xp_cmdshell拒绝访问

    数据库备份作业的sql,,最后一步删除指定时间之前的文件夹.. 使用 xp_cmdshell 函数调用  RMDIR 命令删除过期文件夹,但返回拒绝访问.. 代码如下: DECLARE @PATH2 ...

  3. [转载]运行中的DLL自升级

      最近手头有个需求:dll需要注入到某个进程常驻,该dll具备自我升级能力,当发现新的可用版本时,立即Free自己,加载新的.下面是一个实现方案: 开启一个监听线程,从网络上拉新的可用版本,下载放到 ...

  4. 一个机器绑两个IP可能存在的问题

    1.同一网段两个ip 无法绑到一个机器上. 因为会生成两条该网段路由,两个路由用于同网段报文相应,而实际ip选路时只会选择其中一条路由(估计会选择前面那一条)从一个网卡走.这样不管哪个网卡来的局域网内 ...

  5. C/C++/Linux编程经典电子书pdf下载

    实际上目前Linux下C开发一般都是C++实现下的C,而不是最纯粹的C,使用g++而不是gcc编译,所以直接学习C++的过程性C部分是更加高效的. C++ Primer(中文版 第5版)C++学习头牌 ...

  6. FFmpeg编译:mac下编译iOS平台的FFmpeg库(支持armv7, arm64, i386, x86_64)

    环境:FFmpeg 3.4.6Xcode 10.3macOS 10.14.6iOS SDK 12.4 一.准备工作 1. 下载FFmpeg我这里使用的是3.4.6版本的FFmpeg,可以从FFmpeg ...

  7. ADT中创建Android的Activity

    去创建Activity New->Other->Android->Android Activity->BlankActivity: 输入对应的信息: 创建完毕后,可以看到新建了 ...

  8. nginx: [emerg] open() "/var/run/nginx.pid" failed (13: Permission denied)

    现象 1.centos6.9 用rpm包安装nginx 2.修改Nginx的多个配置文件和配置项 3.service nginx restart 报错: nginx: [emerg] open() & ...

  9. java泛型--问号?和T或E或K或V的区别

    所谓泛型,就是在定义类.接口.方法.参数或成员变量的时候,指定它们操作对象的类型为通用类型. 使用 尖括号 <> 操作符 (The diamond operator )表示泛型, 尖括号内 ...

  10. postgre alter命令修改字段

    参考文档:https://www.yiibai.com/postgresql/postgresql_alter_command.html PostgreSQL ALTER TABLE命令用于添加,删除 ...