On-line fusion of trackers for single-object tracking

Pattern Recognition, 2018 - Elsevier

2019-08-18 22:31:01

Paperhttps://www.sciencedirect.com/science/article/pii/S0031320317303783

1. Background and Motivation:

As we all known, regular single object trackers are easily influenced by chanllenging factors and NO single tracker can handle all these factors well. And different trackers may works well under different scenario, therefore, how to fuse existing trackers to achieve robust tracking is a worthy studying research topic, right? The authors classified existing multi-tracker fusion based algorithms into two main categoreis:

1). passive fusion: only combine trackers outputs with no interaction between the trackers.

2). active fusion: integrate data provided by each tracker with the objective of correcting their inner model when necessary.

In addition, the authors also classified existing multi-tracker fusion techniques into the following three kinds:

The authors state that the active fusion leads in general to better performance, but necessitates a control over tracker components and update mechanisms. This paper inroduce a complementarity measure between trackers based on individual drift measures to predict the fusion performance of the combined trackers in order to select it.

2. Offline tracker evaluation.

The first thing before tracking fusion is to evaluate the tracking performance of each tracker, then, we can design novel strategy to fuse them. The authors propose two kinds of evaulate methods, i.e. the gobal evaluation and local evaluation method:

2.1 Global evaluation.

In this section, the authors only simply give an introduction about evaluation metric of VOT challenging competition, i.e. the accuracy and robustness.

2.2 Local evaluation.

In addition to the global evaluation, the authors also introduced a fine-grained local evaluation method, named "incompleteness".

Incmpleteness is used to define the inability of the trackers to compensate collectively for drifting, and is computed as the number of times when all trackers are simultaneously drifting at the same time (所有跟踪算法同时失效的次数). Formally, the incompleteness I of a set of M trackers on a database of N frames as:

where the $d_t^i$ is the variable used to indicate the tracker $T_i$ is drifting or not.

3. Online tracker failure prediction.

The authors attempt to predict tracking failures from a set of M parallel trackers T = [T1, T2, ... , TM], either individually or collectively. They use three ways to estimate the tracking failure.

3.1 Behavioral Indicators (BI) 

They consider three kinds of information from used trackers, i.e. the confidence score, the score map and specific indicators.

confidence score: this is a popular used criterion to measure the tracker is drift or not. Because they assume the score will be high, when the tracker works well, but rather low when failure.

score map: the tracker usually predict their bounding box based on this response map.

specific indicator: designed for more complicated trackers.

3.2 Box Filtering (BF) 

When the current estimated location of the target from tracker is very far from the previous estimated location output by fusion.

3.3 Box Consensus (BC) 

The principle of this criterion is they think: only few trackers in a given collections are likely to drift. They think the outlier is the failed tracker.

4. Proposed Fusion Method 

如上图所示,作者将整个跟踪过程分为四个阶段:同时进行多跟踪器的跟踪,跟踪器选择,跟踪器融合,跟踪器的校正

4.1 Tracker parallel running:

就是同时跑多个跟踪算法;

4.2 Tracker selection by on-line failure prediction:

从上述跟踪算法的结果中,进行 failure 的预测,然后选择那些高置信度的结果。

4.3 Fusion bounding box computation

在拿到所要融合的 Bbox 之后,作者用如下两种方法进行融合:

1)平均处理:即,将多个 BBox 的坐标进行平均,融合为一个结果。

2)Center of gravity (Gray):加权 k个 box 。

6.4 Tracker correlation:

作者提出了三种方法来校正跟踪模型:

==

On-line fusion of trackers for single-object tracking的更多相关文章

  1. Motion-Based Multiple Object Tracking

    kalman filter tracking... %% Motion-Based Multiple Object Tracking % This example shows how to perfo ...

  2. Object Tracking Benchmark

    Abstract 问题: 1)evaluation is often not suffcient 2)biased for certain types of algorthms 3)datasets ...

  3. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  4. 基于粒子滤波的物体跟踪 Particle Filter Object Tracking

    Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...

  5. 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking

    Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...

  6. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  7. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  8. Online Object Tracking: A Benchmark 论文笔记

    Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...

  9. correlation filters in object tracking

    http://www.cnblogs.com/hanhuili/p/4266990.html Correlation Filter in Visual Tracking系列一:Visual Objec ...

随机推荐

  1. insmod/rmmod

    insmod -f 不检查目前kernel版本与模块编译时的kernel版本是否一致,强制将模块载入 -k 将模块设置为自动卸除 -m 输出模块的载入信息 -o <模块名称> 指定模块的名 ...

  2. mongos

    官方文档:https://docs.mongodb.com/manual/reference/program/mongos/#bin.mongos mongos是MongoDB shard的缩写,它是 ...

  3. 10分钟学会js处理json常用方法

    一.json定义 JSON ( JavaScript Object Notation) ,它是一串字符串 只不过元素会使用特定的符号标注. {} 双括号表示对象 [] 中括号表示数组 "&q ...

  4. vue中使用echart柱状图

    一: <template> <Layout> <Content> <Card :style="{minHeight:'300px'}"&g ...

  5. JavaScript获得URL地址栏参数防乱码

    JavaScript获得URL地址栏参数防乱码 JavaScript中经常需要解析地址栏中拼接的参数.下面的代码基本是固定的代码,这里摘录下备用. //获得地址栏参数值 function getUrl ...

  6. Xshell设置全局配色

    1.个人比较喜欢的配色: [XTerm] text=00ff80 cyan(bold)=00ffff text(bold)=e9e9e9 magenta=c000c0 green=80ff00 gre ...

  7. 团队第五次作业——Alpha2

    一.相关信息 Q A 作业所属课程 https://edu.cnblogs.com/campus/xnsy/2019autumnsystemanalysisanddesign/ 作业要求 https: ...

  8. beta版本——第一次冲刺

    第一次冲刺 (1)SCRUM部分☁️ ✨成员描述: 姓名 李星晨 完成了哪个任务 增加了个人中心返回主页按钮 花了多少时间 1h 还剩余多少时间 1h 遇到什么困难 没有遇到问题 这两天解决的进度 1 ...

  9. O(n) 取得数组中每个元素右边最后一个比它大的元素

    题目 2019.9.7,icpc徐州网络赛的E题 XKC's basketball team ,计蒜客上还可以做. 链接:https://nanti.jisuanke.com/t/41387 Inpu ...

  10. Kotlin属性委托系统总结与提供委托详解

    属性委托总结回顾: 在前三次已经将Kotlin委托相关的知识点进行了完整的学习了,具体博文如下: https://www.cnblogs.com/webor2006/p/11369019.html h ...