On-line fusion of trackers for single-object tracking

Pattern Recognition, 2018 - Elsevier

2019-08-18 22:31:01

Paperhttps://www.sciencedirect.com/science/article/pii/S0031320317303783

1. Background and Motivation:

As we all known, regular single object trackers are easily influenced by chanllenging factors and NO single tracker can handle all these factors well. And different trackers may works well under different scenario, therefore, how to fuse existing trackers to achieve robust tracking is a worthy studying research topic, right? The authors classified existing multi-tracker fusion based algorithms into two main categoreis:

1). passive fusion: only combine trackers outputs with no interaction between the trackers.

2). active fusion: integrate data provided by each tracker with the objective of correcting their inner model when necessary.

In addition, the authors also classified existing multi-tracker fusion techniques into the following three kinds:

The authors state that the active fusion leads in general to better performance, but necessitates a control over tracker components and update mechanisms. This paper inroduce a complementarity measure between trackers based on individual drift measures to predict the fusion performance of the combined trackers in order to select it.

2. Offline tracker evaluation.

The first thing before tracking fusion is to evaluate the tracking performance of each tracker, then, we can design novel strategy to fuse them. The authors propose two kinds of evaulate methods, i.e. the gobal evaluation and local evaluation method:

2.1 Global evaluation.

In this section, the authors only simply give an introduction about evaluation metric of VOT challenging competition, i.e. the accuracy and robustness.

2.2 Local evaluation.

In addition to the global evaluation, the authors also introduced a fine-grained local evaluation method, named "incompleteness".

Incmpleteness is used to define the inability of the trackers to compensate collectively for drifting, and is computed as the number of times when all trackers are simultaneously drifting at the same time (所有跟踪算法同时失效的次数). Formally, the incompleteness I of a set of M trackers on a database of N frames as:

where the $d_t^i$ is the variable used to indicate the tracker $T_i$ is drifting or not.

3. Online tracker failure prediction.

The authors attempt to predict tracking failures from a set of M parallel trackers T = [T1, T2, ... , TM], either individually or collectively. They use three ways to estimate the tracking failure.

3.1 Behavioral Indicators (BI) 

They consider three kinds of information from used trackers, i.e. the confidence score, the score map and specific indicators.

confidence score: this is a popular used criterion to measure the tracker is drift or not. Because they assume the score will be high, when the tracker works well, but rather low when failure.

score map: the tracker usually predict their bounding box based on this response map.

specific indicator: designed for more complicated trackers.

3.2 Box Filtering (BF) 

When the current estimated location of the target from tracker is very far from the previous estimated location output by fusion.

3.3 Box Consensus (BC) 

The principle of this criterion is they think: only few trackers in a given collections are likely to drift. They think the outlier is the failed tracker.

4. Proposed Fusion Method 

如上图所示,作者将整个跟踪过程分为四个阶段:同时进行多跟踪器的跟踪,跟踪器选择,跟踪器融合,跟踪器的校正

4.1 Tracker parallel running:

就是同时跑多个跟踪算法;

4.2 Tracker selection by on-line failure prediction:

从上述跟踪算法的结果中,进行 failure 的预测,然后选择那些高置信度的结果。

4.3 Fusion bounding box computation

在拿到所要融合的 Bbox 之后,作者用如下两种方法进行融合:

1)平均处理:即,将多个 BBox 的坐标进行平均,融合为一个结果。

2)Center of gravity (Gray):加权 k个 box 。

6.4 Tracker correlation:

作者提出了三种方法来校正跟踪模型:

==

On-line fusion of trackers for single-object tracking的更多相关文章

  1. Motion-Based Multiple Object Tracking

    kalman filter tracking... %% Motion-Based Multiple Object Tracking % This example shows how to perfo ...

  2. Object Tracking Benchmark

    Abstract 问题: 1)evaluation is often not suffcient 2)biased for certain types of algorthms 3)datasets ...

  3. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  4. 基于粒子滤波的物体跟踪 Particle Filter Object Tracking

    Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...

  5. 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking

    Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...

  6. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  7. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  8. Online Object Tracking: A Benchmark 论文笔记

    Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...

  9. correlation filters in object tracking

    http://www.cnblogs.com/hanhuili/p/4266990.html Correlation Filter in Visual Tracking系列一:Visual Objec ...

随机推荐

  1. java-java技术链接

    java基础知识总结大全:https://blog.csdn.net/hao19980724/article/details/83792516 Java核心技术梳理-集合:https://mp.wei ...

  2. git指令集合

    原网页:https://www.linuxidc.com/Linux/2018-04/151809.htm Git 是一个很强大的分布式版本控制系统.它不但适用于管理大型开源软件的源代码,管理私人的文 ...

  3. php导出数据到csv

    序言 php导出数据到csv是一种很常见的功能,且csv相比于excel文件有其一定的优势,首先csv对数据的行数没有限制,但是excel对数据的行数有一定的限制,因此,csv文件对于导出大量的数据来 ...

  4. Telnet,SSH1,SSH2,Telnet/SSL,Rlogin,Serial,TAPI,RAW(转)

    转载:https://www.cnblogs.com/yxwkf/p/4840675.html 一.Telnet 采用Telnet用来訪问远程计算机的TCP/IP协议以控制你的网络设备,相当于在离开某 ...

  5. Andrew Ng机器学习 一: Linear Regression

    一:单变量线性回归(Linear regression with one variable) 背景:在某城市开办饭馆,我们有这样的数据集ex1data1.txt,第一列代表某个城市的人口,第二列代表在 ...

  6. C++学习(1)—— 初识C++

    1. 变量 作用:给一段指定的内存空间起名,方便操作这段内存空间 语法:数据类型 变量名称=变量初始值​ #include<iostream> using namespace std; i ...

  7. MacOS安装Docker

    傻瓜式安装: 1. 浏览器或命令行下载:https://download.docker.com/mac/stable/Docker.dmg 2. 点击安装文件,拖动图标到应用 3. 确认安装正常:do ...

  8. 大数据JavaWeb之java基础巩固----Junit&反射&注解

    最近打算从0开始学学大数据,目前的主业是Android开发,但是当年毕业之后其实是搞J2EE的,所以打算没事又来拓展一下后台的技能,扩宽一下自己的知识体系对于自己的未来也能够多一些可能,另外大数据的一 ...

  9. selenium常用的API(四)设置get方法最大加载时间

    我们在进行自动化测试的时候,使用get方法打开页面时会等到页面完全加载完才会执行后续操作, 有时我们需要的元素已加载完成,而部分JS未加载完导致加载时间很长,这无疑增加了自动化测试的时间, 针对此情况 ...

  10. Echo团队Alpha冲刺 - 总结随笔

    班级:软件工程1916|W 作业:项目Alpha冲刺(团队) 团队名称:Echo 作业目标:完成项目Alpha冲刺 评审表:腾讯文档 Alpha冲刺随笔集合 目录 团队博客汇总 项目预期计划及完成情况 ...