On-line fusion of trackers for single-object tracking

Pattern Recognition, 2018 - Elsevier

2019-08-18 22:31:01

Paperhttps://www.sciencedirect.com/science/article/pii/S0031320317303783

1. Background and Motivation:

As we all known, regular single object trackers are easily influenced by chanllenging factors and NO single tracker can handle all these factors well. And different trackers may works well under different scenario, therefore, how to fuse existing trackers to achieve robust tracking is a worthy studying research topic, right? The authors classified existing multi-tracker fusion based algorithms into two main categoreis:

1). passive fusion: only combine trackers outputs with no interaction between the trackers.

2). active fusion: integrate data provided by each tracker with the objective of correcting their inner model when necessary.

In addition, the authors also classified existing multi-tracker fusion techniques into the following three kinds:

The authors state that the active fusion leads in general to better performance, but necessitates a control over tracker components and update mechanisms. This paper inroduce a complementarity measure between trackers based on individual drift measures to predict the fusion performance of the combined trackers in order to select it.

2. Offline tracker evaluation.

The first thing before tracking fusion is to evaluate the tracking performance of each tracker, then, we can design novel strategy to fuse them. The authors propose two kinds of evaulate methods, i.e. the gobal evaluation and local evaluation method:

2.1 Global evaluation.

In this section, the authors only simply give an introduction about evaluation metric of VOT challenging competition, i.e. the accuracy and robustness.

2.2 Local evaluation.

In addition to the global evaluation, the authors also introduced a fine-grained local evaluation method, named "incompleteness".

Incmpleteness is used to define the inability of the trackers to compensate collectively for drifting, and is computed as the number of times when all trackers are simultaneously drifting at the same time (所有跟踪算法同时失效的次数). Formally, the incompleteness I of a set of M trackers on a database of N frames as:

where the $d_t^i$ is the variable used to indicate the tracker $T_i$ is drifting or not.

3. Online tracker failure prediction.

The authors attempt to predict tracking failures from a set of M parallel trackers T = [T1, T2, ... , TM], either individually or collectively. They use three ways to estimate the tracking failure.

3.1 Behavioral Indicators (BI) 

They consider three kinds of information from used trackers, i.e. the confidence score, the score map and specific indicators.

confidence score: this is a popular used criterion to measure the tracker is drift or not. Because they assume the score will be high, when the tracker works well, but rather low when failure.

score map: the tracker usually predict their bounding box based on this response map.

specific indicator: designed for more complicated trackers.

3.2 Box Filtering (BF) 

When the current estimated location of the target from tracker is very far from the previous estimated location output by fusion.

3.3 Box Consensus (BC) 

The principle of this criterion is they think: only few trackers in a given collections are likely to drift. They think the outlier is the failed tracker.

4. Proposed Fusion Method 

如上图所示,作者将整个跟踪过程分为四个阶段:同时进行多跟踪器的跟踪,跟踪器选择,跟踪器融合,跟踪器的校正

4.1 Tracker parallel running:

就是同时跑多个跟踪算法;

4.2 Tracker selection by on-line failure prediction:

从上述跟踪算法的结果中,进行 failure 的预测,然后选择那些高置信度的结果。

4.3 Fusion bounding box computation

在拿到所要融合的 Bbox 之后,作者用如下两种方法进行融合:

1)平均处理:即,将多个 BBox 的坐标进行平均,融合为一个结果。

2)Center of gravity (Gray):加权 k个 box 。

6.4 Tracker correlation:

作者提出了三种方法来校正跟踪模型:

==

On-line fusion of trackers for single-object tracking的更多相关文章

  1. Motion-Based Multiple Object Tracking

    kalman filter tracking... %% Motion-Based Multiple Object Tracking % This example shows how to perfo ...

  2. Object Tracking Benchmark

    Abstract 问题: 1)evaluation is often not suffcient 2)biased for certain types of algorthms 3)datasets ...

  3. Online Object Tracking: A Benchmark 论文笔记(转)

    转自:http://blog.csdn.net/lanbing510/article/details/40411877 有博主翻译了这篇论文:http://blog.csdn.net/roamer_n ...

  4. 基于粒子滤波的物体跟踪 Particle Filter Object Tracking

    Video来源地址 一直都觉得粒子滤波是个挺牛的东西,每次试图看文献都被复杂的数学符号搞得看不下去.一个偶然的机会发现了Rob Hess(http://web.engr.oregonstate.edu ...

  5. 泡泡一分钟: Deep-LK for Efficient Adaptive Object Tracking

    Deep-LK for Efficient Adaptive Object Tracking "链接:https://pan.baidu.com/s/1Hn-CVgiR7WV0jvaYBv5 ...

  6. [Object Tracking] Overview of algorithms for Object Tracking

    From: https://www.zhihu.com/question/26493945 可以载入史册的知乎贴 目标跟踪之NIUBILITY的相关滤波 - 专注于分享目标跟踪中非常高效快速的相关滤波 ...

  7. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  8. Online Object Tracking: A Benchmark 论文笔记

    Factors that affect the performance of a tracing algorithm 1 Illumination variation 2 Occlusion 3 Ba ...

  9. correlation filters in object tracking

    http://www.cnblogs.com/hanhuili/p/4266990.html Correlation Filter in Visual Tracking系列一:Visual Objec ...

随机推荐

  1. Android为TV端助力之热修复原理

    通过源码我们知道Android加载类是通过ClassLoad类里面的findClass先去查找的,如下图所示 通过看源码我们知道,ClassLoad是一个抽象类,它本身并没有实现findclass() ...

  2. 【RMAN】RMAN脚本中使用替换变量

    [RMAN]RMAN脚本中使用替换变量--windows 下rman全备脚本 一.1  BLOG文档结构图 一.2  前言部分 一.2.1  导读 各位技术爱好者,看完本文后,你可以掌握如下的技能,也 ...

  3. SpringBoot2.x项目初始化

    1. 项目初始化说明 使用SpringBoot生成器 修改application.properties为application.yml 启动运行SpringBoot项目 2. 初始化项目 Spring ...

  4. 关于 Spring AOP (AspectJ) 你该知晓的一切

    版权声明:本文为CSDN博主「zejian_」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明.原文链接:https://blog.csdn.net/javazej ...

  5. Linux用户组和权限管理

    Linux用户组和权限管理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.   一.Linux的安全模型 1>.安全3A 这并不是Linux特有的概念,在很多领域都有3A的概念 ...

  6. ThinkPHP模型中的HAS_ONE,BELONG_TO,HAS_MANY实践

    因为很熟悉DJANGO,所以对TP,要慢慢适应. 1,SQL文件 /* Navicat MySQL Data Transfer Source Server : localhost_3306 Sourc ...

  7. NOIP2019 PJ 对称二叉树

    题目描述 一棵有点权的有根树如果满足以下条件,则被轩轩称为对称二叉树: 二叉树: 将这棵树所有节点的左右子树交换,新树和原树对应位置的结构相同且点权相等. 下图中节点内的数字为权值,节点外的 id 表 ...

  8. GlusterFS集群文件系统研究

    https://blog.csdn.net/liuaigui/article/details/6284551 1.      GlusterFS概述GlusterFS是Scale-Out存储解决方案G ...

  9. LeetCode 838. Push Dominoes

    原题链接在这里:https://leetcode.com/problems/push-dominoes/ 题目: There are N dominoes in a line, and we plac ...

  10. CDN工作机制

    CDN(content delivery network),即内容分布网络,是一种构建在现有Internet上的一种先进的流量分配网络.CDN以缓存网站中的静态数据为主,当用户请求动态内容时,先从CD ...