题目描述 Description

熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目。小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了。
小沐沐说,对于两个串A,B,如果它们都包含一段位置不一定连续的数字,且数字是严格递增的,那么称这一段数字是两个串的公共上升子串,而所有的公共上升子串中最长的就是最长公共上升子串了。
奶牛半懂不懂,小沐沐要你来告诉奶牛什么是最长公共上升子串。不过,只要告诉奶牛它的长度就可以了。

输入描述 Input Description

第一行N,表示A,B的长度。
第二行,串A。
第三行,串B。

输出描述 Output Description

输出长度。

样例输入 Sample Input

4
2 2 1 3
2 1 2 3

样例输出 Sample Output

2

数据范围及提示 Data Size & Hint

1<=N<=3000,A,B中的数字不超过maxlongint

 
/*
dp[i][j]表示以s1的第i个元素和s2的第j个元素结尾的LCIS长度
1、若a[i]<a[j],则dp[i][j]=dp[i-1][j]
2、若a[i]==a[j],则dp[i][j]=max(dp[i][k])+1, k=1->j
朴素的求解LCIS(n^3):
for(int i=1;i<=n;++i)
for(int j=1;j<=m;++j)
{
dp[i][j]=dp[i-1][j];
if(a[i]==a[j])
{
int tmp=0;
for(int k=1;k<j;++k)
if(a[j]>a[k])
tmp=max(tmp,dp[i-1][k]);
}
}
可以发现,tmp在++j的时候就可以被算出来,所以我们可以省掉枚举k的那重循环,这样就变成了O(n^2)。
*/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std; const int N=; int n;
int a[N],dp[N]; int main()
{
scanf("%d",&n);
for(int i=;i<=n<<;scanf("%d",&a[i]),++i);
for(int i=,len=;i<=n;len=,++i)
for(int j=n+;j<=n<<;++j)
{
if(a[i]>a[j]&&len<dp[j])
len=dp[j];
else if(a[i]==a[j])
dp[j]=len+;
}
int ans=*max_element(dp+n+,dp+n*+);
printf("%d",ans);
return ;
}

Codevs 2185【模板】最长公共上升子序列的更多相关文章

  1. codevs 2185 最长公共上升子序列

    题目链接: codevs 2185 最长公共上升子序列codevs 1408 最长公共子序列 题目描述 Description熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升 ...

  2. codevs 2185 最长公共上升子序列--nm的一维求法

    2185 最长公共上升子序列  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 钻石 Diamond 题目描述 Description 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目 ...

  3. 最长公共上升子序列(codevs 2185)

    题目描述 Description 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了. 小沐沐说,对 ...

  4. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  5. 【线型DP模板】最上上升子序列(LIS),最长公共子序列(LCS),最长公共上升子序列(LCIS)

    BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序 ...

  6. 最长公共上升子序列(LCIS)

    最长公共上升子序列慕名而知是两个字符串a,b的最长公共递增序列,不一定非得是连续的.刚开始看到的时候想的是先用求最长公共子序列,然后再从其中找到最长递增子序列,可是仔细想一想觉得这样有点不妥,然后从网 ...

  7. ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)

    Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...

  8. POJ 2127 最长公共上升子序列

    动态规划法: #include <iostream> #include <cstdio> #include <fstream> #include <algor ...

  9. [CodeForces10D]LCIS(最长公共上升子序列) - DP

    Description 给定两个数列,求最长公共上升子序列,并输出其中一种方案. Input&Output Input 第一行一个整数n(0<n<=500),数列a的长度. 第二行 ...

随机推荐

  1. 玩转Spring全家桶笔记 03 Spring的JDBC操作以及SQL批处理的实现

    1 spring-jdbc core JdbcTemplate 等相关核心接口和类(核心) datesource 数据源相关的辅助类(内嵌数据源的初始化) object 将基本的JDBC操作封装成对象 ...

  2. Unity的学习笔记(摇杆制作)

    最近看到了一个很新颖的摇杆,就是按下后,会出现在按下的位置,并且拖着走的时候,到一定距离整个摇杆也会跟着走,于是自己测试做了一下这种摇杆 首先,先说一下我的摇杆预设体结构 代码挂在哪里都无所谓,关键是 ...

  3. isolate两三事

    1.1. 第一步:创建并握手 如前所述,Isolate 不共享任何内存并通过消息进行交互,因此,我们需要找到一种方法在「调用者」与新的 isolate 之间建立通信. 每个 Isolate 都暴露了一 ...

  4. 不能在本机启动SQL Server服务错误代码126(要在协议里面禁用所有别的VIA,是怎么回事?)

    在启动数据库sql服务的时候提示[Windows 不能在 本地计算机 启动 SQL Server . 有关更多信息,查阅系统事件日志.如果这是非 Microsoft 服务,请与服务厂商联系,并参考特定 ...

  5. Oracle数据库的视图

    使用视图的优点:    1.简化数据操作:视图可以简化用户处理数据的方式.    2.着重于特定数据:不必要的数据或敏感数据可以不出现在视图中.    3.视图提供了一个简单而有效的安全机制,可以定制 ...

  6. oracle in和exists区别

    in和exists http://oraclemine.com/sql-exists-vs-in/ https://www.techonthenet.com/oracle/exists.php htt ...

  7. elasticsearch 7版本 基础操作

    elasticsearch 7版本 基础操作 首先我们浏览器http://localhost:5601/进入 kibana里的Console中输入 首先让我们在 Console 中输入: PUT t1 ...

  8. thinkphp概述

    thinkphp框架是一个免费的,开源,快速,简单的面向对象的轻量级PHP开发框架. 了解什么是thinkphp概述,thinkphp项目目录结构,thinkphp的控制器,视图,thinkphp项目 ...

  9. idea中添加多级父子模块

    在 IntelliJ IDEA 中,没有类似于 Eclipse 工作空间(Workspace)的概念,而是提出了Project和Module这两个概念. 在 IntelliJ IDEA 中Projec ...

  10. 设置Django生产环境系统重启后的自动启动项

    前面,作者已经介绍了把Django部署到生产环境中的主要方法,现在我们来看一下如何设置项目开机启动. 在把Django项目部署到生产环境中时,我们前面使用安装包和源码安装了Nginx.uwsgi.re ...