洛谷P1288取数游戏2
博弈论。
考虑先手和后手的关系。然后可以通过统计数值不是0的数的个数来得出答案。
\(Code\)
#include <bits/stdc++.h>
using namespace std;
int main()
{
int n, ans = 0, a[1010];
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
if (a[i] == 0)
continue;
ans++;
}
if (ans & 1)
printf("YES");
else
printf("NO");
}
洛谷P1288取数游戏2的更多相关文章
- 洛谷P1288 取数游戏II(博弈)
洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...
- 洛谷P1288 取数游戏II[博弈论]
题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...
- 洛谷P1288 取数游戏II
题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...
- 洛谷P1288 取数游戏II 题解 博弈论
题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...
- 洛谷 P1288 取数游戏II
奇奇怪怪的游戏,不多写了 #include<cstdio> ]; int main() { int i; scanf("%d",&n); ;i<=n;i+ ...
- 洛谷——P1123 取数游戏
P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取 ...
- 洛谷 p1123 取数游戏【dfs】
题目链接:https://www.luogu.org/problemnew/show/P1123 转载于:>>>>>> 题目描述 一个N×M的由非负整数构成的数字矩 ...
- 洛谷 P1123 取数游戏
题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少. ...
- 洛谷1288 取数游戏II
原题链接 因为保证有\(0\)权边,所以整个游戏实际上就是两条链. 很容易发现当先手距离\(0\)权边有奇数条边,那么必胜. 策略为:每次都将边上权值取光,逼迫后手向\(0\)权边靠拢.若此时后手不取 ...
随机推荐
- 使用Jenkins自带功能(不用shell)构建Docker镜像并推送到远程仓库
意义: 一开始实现这个目的是在Jenkins中使用的shell脚本,也就是如下的这个: bash # 进入到生成jar包的根目录 cd ${WORKSPACE}/${module_filename} ...
- ThreadPoolExecutor使用错误导致死锁
背景 10月2号凌晨12:08收到报警,所有请求失败,处于完全不可用状态 应用服务器共四台resin,resin之前由四台nginx做负载均衡 服务器现象及故障恢复步骤 登入服务器,观察resin进程 ...
- 实战远程文件同步(Remote File Sync)
1. 远程文件同步的常见方式: 1.cron + rsync 优点: 简单 缺点:定时执行,实时性比较差:另外,rsync同步数据时,需要扫描所有文件后进行比对,进行差量传输.如果文件数量达到了百万甚 ...
- undefined reference to cv::imread(cv::String const&, int)
.build_release/lib/libcaffe-nv.so: undefined reference to cv::imread(cv::String const&, int)' .b ...
- 【洛谷 P3041】 [USACO12JAN]视频游戏的连击Video Game Combos(AC自动机,dp)
题目链接 手写一下AC自动机(我可没说我之前不是手写的) Trie上dp,每个点的贡献加上所有是他后缀的串的贡献,也就是这个点到根的fail链的和. #include <cstdio> # ...
- JS中BOM和DOM常用的事件
总结:window对象 ● window.innerHeight - 浏览器窗口的内部高度 ● window.innerWidth - 浏览器窗口的内部宽度 ● window.open() - 打开新 ...
- Referer和空Referer
参考CSDN 原文:https://blog.csdn.net/hxl188/article/details/38964743 Referer和空Referer 最近公司有个接口需要针对几个域名加白名 ...
- Swift 4 中的泛型
作为Swift中最重要的特性之一,泛型使用起来很巧妙.很多人都不太能理解并使用泛型,特别是应用开发者.泛型最适合libraries, frameworks, and SDKs的开发.在这篇文章中,我将 ...
- influxdb系列:一、influxdb概念
根据influxdb的官方文档介绍,它是一个时间序列数据库,但是仅仅从名字却不知道它跟已有的关系型数据库有什么区别? 当学习一个新的东西的时候,我的习惯往往是想知道它和我已掌握的知识的对比关系,这样子 ...
- flashdevelop调用ios方法
来源:http://blog.csdn.net/zu12jing/article/details/7331397 flash开发工具用的是flashdevelop(由于flashdevelop还能直接 ...