noi.ac #45 计数
\(des\)
给定 \(n\) 的全排列 + 一个值域属于 \([1, n]\) 的元素构成长度为 \(n + 1\) 的序列
问长度为 \(i\) 的本质不同的子序列的个数
\(sol\)
小学计数题
记 \(p + 1, q - 1\) 的元素相同
从起点到第一个相同元素长度 \(p\)
从终点到第二个相同元素长度 \(q\)
对于长度为 \(i\) 的本质不同的子序列的个数
可以用全部的答案 - 出现重复的个数
显然全部的答案 \(n + 1 \choose i\)
对于重复的答案,只存在于重复的元素存在于挑选的元素中的时候
这样的话,挑选的元素只剩下 \(i - 1\) 个
枚举在 \([1, p]\) 中挑选 \(x\) 个,在 \([q, n + 1]\) 中挑选 \(i - 1 - x\) 个统计答案
。。。
这样枚举的就非常zz啊
重复的方案数显然就是 $ q + p \choose i - 1$
时间复杂度 \(O(nlogmod)\)
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10, Mod = 1e9 + 7;
#define gc getchar()
inline int read() {int x = 0; char c = gc;while(c < '0' || c > '9') c = gc;
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = gc; return x;}
#define LL long long
#define Rep(i, a, b) for(int i = a; i <= b; i ++)
LL fac[N] = {1};
bool vis[N];
LL n, a[N];
LL q, p;
LL Ksm(LL a, LL b) {
LL ret = 1;
while(b) {if(b & 1) ret = ret * a % Mod; a = a * a % Mod; b >>= 1;}
return ret;
}
LL C(LL n_, LL m) {
if(n_ < m || m == 0) return 0;
return (fac[n_] * Ksm(((fac[m] * fac[n_ - m]) % Mod), Mod - 2)) % Mod;
}
int main() {
n = read();
Rep(i, 1, n + 1) fac[i] = (fac[i - 1] * i) % Mod;
Rep(i, 1, n + 1) {
a[i] = read();
if(vis[a[i]]) {
p = n + 1 - i;
Rep(j, 1, i) if(a[j] == a[i]) {q = j - 1; break;}
break;
}
vis[a[i]] = 1;
}
Rep(i, 1, n + 1) {
LL a = C(n + 1, i), b = C(q + p, i - 1);
LL Answer;
if(i == 1) Answer = a - b - 1;
else Answer = a - b;
if(Answer < 0) Answer += Mod;
cout << Answer << "\n";
}
return 0;
}
noi.ac #45 计数的更多相关文章
- NOI.AC 31 MST——整数划分相关的图论(生成树、哈希)
题目:http://noi.ac/problem/31 模拟 kruscal 的建最小生成树的过程,我们应该把树边一条一条加进去:在加下一条之前先把权值在这一条到下一条的之间的那些边都连上.连的时候要 ...
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
随机推荐
- mysql中常见正则表达式的应用
查找name字段中以'st'为开头的所有数据: mysql> SELECT name FROM person_tbl WHERE name REGEXP '^st'; 查找name字段中以'ok ...
- 关于fastjson与jackson在反序列化bool型时的区别
背景 在测试中,两个项目a,b的接口参数用到了Bool类型,当传参"0",项目a通过了,项目b报错了,排查了下,项目b的那个接口,在对传参反序列化时就出现了问题,最后发现两个项目使 ...
- grafana部署安装
部署grafana 在prometheus& grafana server节点部署grafana服务. 1. 下载&安装 # 下载 [root@prometheus ~]# cd /u ...
- LOJ6587 WF2019 交通堵塞 CRT、bitset
传送门 首先设\(P = lcm(r_i + g_i)\),因为\(P \mid 2019!\),所以在\([0,2019!]\)里随机实数相当于在\([0,2019!)\)随机实数,相当于在\([0 ...
- Ubuntu18.04 GitLab仓库服务器搭建
首先安装必须的一些服务 sudo apt-get update sudo apt-get install -y curl openssh-server ca-certificates sudo apt ...
- WebClient 请求 https 页面出错:未能创建 SSL/TLS 安全通道
ServicePointManager.SecurityProtocol = SecurityProtocolType.Ssl3 | SecurityProtocolType.Tls | Securi ...
- 深入理解JVM(六) -- GC执行原则和方案
上篇文章中,我们了解了Java虚拟机垃圾回收的思路和策略,这篇文章我们将了解Java是如何实现高效的回收算法的. 我们需要了解,内存回收必须要保证“一致性”,意思就是在执行GC分析的时候,系统看起来要 ...
- 【转载】C#中使用Average方法对List集合中相应元素求平均值
在C#的List集合操作中,有时候需要对List集合元素进行汇总求平均值,如数值类型的List集合元素,有时候对象类型的List集合也需要对集合中的元素的某个对象进行汇总求平均值,此时都可以使用到Av ...
- python取字母以及数字随机数
一.这里用到了:String模块ascii_letters和digits ''.join(random.sample(string.ascii_letters + string.digits, 9)) ...
- Linux 内核/驱动开发总结
总体来看,需要一个阶段性总结了,因为现在SD卡的调试也进入了卡壳期.大概会出一系列的总结文章,主要涉及的主题在下面列出: 1.开发工具:gcc/gdb/vim/ctags 2.Makefile和KCo ...