原创:协同过滤之spark FP-Growth树应用示例
上一篇博客中,详细介绍了UserCF和ItemCF,ItemCF,就是通过用户的历史兴趣,把两个物品关联起来,这两个物品,可以有很高的相似度,也可以没有联系,比如经典的沃尔玛
的啤酒尿布案例。通过ItemCF,能能够真正实现个性化推荐,最大限度地挖掘用户的需求。在购物网站和电子商务,图书中,应用特别广泛。需要维护物品相似度表。spark的MLlib中,
有FP-Growth树挖掘物品的相关度,应用很多。关于FP-Growth树的介绍,有很多博文,不详细说了。他相对于Apriori算法,做了很大的改进,大大降低了时间复杂度。构建FP-Growth
树的过程,还需要维护一个头表(链表),用来存储频繁项集的前缀路径。下面的一张图,可以说明:
从FP-Growth增长树中挖掘出频繁项集后,比如:啤酒3 鸡肉2 果汁2 | 尿布3,设置了minConf(最小置信度)后,当用户(或者是一个新用户)购买了尿布时,可以给他推荐啤酒,鸡肉。下面的代码,说明了这一原理:
package com.txq.spark.test /**
* Created by ACER on 2016/11/22.
*/
case class ItemFreq(val item:String,val freq:Double) { } package com.txq.spark.test import java.util.concurrent.ConcurrentHashMap
import org.apache.spark.mllib.fpm.FPGrowth
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection._ /**
* Created by ACER on 2016/11/20.
*/
object Test1 {
System.setProperty("hadoop.home.dir", "D://hadoop-2.6.2");
val conf = new SparkConf().setMaster("local").setAppName("testFP-Growth");
val sc = new SparkContext(conf); var freqMap = new ConcurrentHashMap[mutable.ArrayBuffer[String],mutable.ArrayBuffer[ItemFreq]]();//捆绑推销(key值为用户购买的历史商品)
val items = new ConcurrentHashMap[Long,mutable.ArrayBuffer[String]]()//用户购买的历史商品
val minSupport = 0.5//最小支持度
val minConf = 0.75//最小置信度
var freq = 0L//用户历史商品出现的次数
var li = mutable.ArrayBuffer[ItemFreq]()
def main(args: Array[String]): Unit = {
//1.加载过去一段时间,大量用户购买的商品,数据源为商品列表,训练FP-Growth模型
val data = sc.textFile("D://fp.txt").map(_.split(" ")).cache()
val count = data.count()
val fpg = new FPGrowth().setMinSupport(minSupport).setNumPartitions(3)
val model = fpg.run(data) //2.输出所有频繁项集
val result = model.freqItemsets.filter(_.items.size >= 1)
result.foreach(f => println(f.items.mkString(" ")+"->"+f.freq)) //3.获取用户id,并得到历史商品
val userId = args(0).toLong
var bucket:mutable.ArrayBuffer[String] = items.get(userId.toLong)
if(bucket == null){
bucket = new mutable.ArrayBuffer[String]()
for(i <- 1 until args.length){
bucket += (args(i))
}
}
items.put(userId,bucket)//收集用户购买的历史商品
for(item <- result){
//4.在模型中找出与用户的历史商品相符合的频繁项集,得到频率
if(item.items.mkString == items.get(userId).mkString){
freq = item.freq
}
}
println("历史商品出现的次数:" + freq)//调试信息(输出用户历史商品的支持度)
//5.根据历史商品,找出置信度相对高的频繁项,推荐给用户 for(f <- result){
if(f.items.mkString.contains(items.get(userId).mkString) && f.items.size > items.get(userId).size) {
val conf:Double = f.freq.toDouble / freq.toDouble
if(conf >= minConf) {
//找出所有置信度大于minConf的项
var item = f.items
for (i <- 0 until items.get(userId).size) {
item = item.filter(_ != items.get(userId)(i)) //过滤掉用户历史商品,剩下的为推荐的商品
}
for (str <- item) {
li += ItemFreq(str, conf)
}
}
}
}
freqMap.put(items.get(userId),li);
println("推荐的商品为:")
freqMap.get(items.get(userId)).foreach(f =>println(f.item + "->" + f.freq))
}
}
挖掘出的频繁项集:
尿布->3
尿布 啤酒->3 果汁->4 鸡肉->4
鸡肉 果汁->3 啤酒->4
啤酒 鸡肉->3
啤酒 果汁->3 历史商品出现的次数:4 推荐的商品为:
鸡肉->0.75
啤酒->0.75 测试文件为:
果汁 鸡肉
鸡肉 啤酒 鸡蛋 尿布
果汁 啤酒 尿布 可乐
果汁 鸡肉 啤酒 尿布
鸡肉 果汁 啤酒 可乐
原创:协同过滤之spark FP-Growth树应用示例的更多相关文章
- 推荐系统-协同过滤在Spark中的实现
作者:vivo 互联网服务器团队-Tang Shutao 现如今推荐无处不在,例如抖音.淘宝.京东App均能见到推荐系统的身影,其背后涉及许多的技术.本文以经典的协同过滤为切入点,重点介绍了被工业界广 ...
- 原创:协同过滤之ALS
推荐系统的算法,在上个世纪90年代成型,最早应用于UserCF,基于用户的协同过滤算法,标志着推荐系统的形成.首先,要明白以下几个理论:①长尾理论②评判推荐系统的指标.之所以需要推荐系统,是要挖掘冷门 ...
- 协同过滤 CF & ALS 及在Spark上的实现
使用Spark进行ALS编程的例子可以看:http://www.cnblogs.com/charlesblc/p/6165201.html ALS:alternating least squares ...
- 【转载】协同过滤 & Spark机器学习实战
因为协同过滤内容比较多,就新开一篇文章啦~~ 聚类和线性回归的实战,可以看:http://www.cnblogs.com/charlesblc/p/6159187.html 协同过滤实战,仍然参考:h ...
- Spark MLlib之协同过滤
原文:http://blog.selfup.cn/1001.html 什么是协同过滤 协同过滤(Collaborative Filtering, 简称CF),wiki上的定义是:简单来说是利用某兴趣相 ...
- Spark机器学习之协同过滤算法
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相 ...
- Spark机器学习(11):协同过滤算法
协同过滤(Collaborative Filtering,CF)算法是一种常用的推荐算法,它的思想就是找出相似的用户或产品,向用户推荐相似的物品,或者把物品推荐给相似的用户.怎样评价用户对商品的偏好? ...
- 协同过滤 spark scala
1 http://www.cnblogs.com/charlesblc/p/6165201.html [转载]协同过滤 & Spark机器学习实战 2 基于Spark构建推荐引擎之一:基于物品 ...
- Spark 基于物品的协同过滤算法实现
J由于 Spark MLlib 中协同过滤算法只提供了基于模型的协同过滤算法,在网上也没有找到有很好的实现,所以尝试自己实现基于物品的协同过滤算法(使用余弦相似度距离) 算法介绍 基于物品的协同过滤算 ...
随机推荐
- Go defer 会有性能损耗,尽量不要用?
上个月在 @polaris @轩脉刃 的全栈技术群里看到一个小伙伴问 “说 defer 在栈退出时执行,会有性能损耗,尽量不要用,这个怎么解?”. 恰好前段时间写了一篇 <深入理解 Go def ...
- 关于使用jquery form submit出现多次提交的问题
错误的写法: $(this).submit(function () { $(this).ajaxSubmit({ url: opts.url, type: 'post', dataType: 'jso ...
- FORM表单 onclick()与onsubmit()
FORM表单中onclick().submit()与onsubmit()的问题 最近遇到一次处理form数据的过滤,采用了button的onclick事件来检查,发现return false后表单仍然 ...
- Docker 四种网络模式
原文 https://www.cnblogs.com/gispathfinder/p/5871043.html 我们在使用docker run创建Docker容器时,可以用--net选项指定容器的网络 ...
- 2019 房多多java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.房多多等公司offer,岗位是Java后端开发,因为发展原因最终选择去了房多多,入职一年时间了,也成为了面试官 ...
- aria2 cmd set chmod, and others..
import 'package:flutter/material.dart'; import 'dart:io'; import 'dart:async'; import 'package:rxdar ...
- Java 之 ServletContext 对象
ServletContext 对象 一.概念 ServletContext对象:代表整个 web 应用,可以和程序的容器(服务器)来通信. 二.获取 1.通过request 获取 方法: reques ...
- 供应链管理如何提高效率?APS系统成优化引擎
APS系统,虽然它的起兴只有短短的十几年,但是在这段时间里面,它为很多企业解决了很多人工手动.脑力不可解决的问题. 所以APS被誉为供应链优化引擎,APS常常被称为高级计划与排程,但也有称为高级计划系 ...
- java-springCloud环境配置
SpringCloud注解和配置以及pom依赖说明 https://www.cnblogs.com/zhuwenjoyce/p/9663324.html https://blog.csdn.net/s ...
- JavaScript: 数据类型检测
由于JavaScript是门松散类型语言,定义变量时没有类型标识信息,并且在运行期可以动态更改其类型,所以一个变量的类型在运行期是不可预测的,因此,数据类型检测在开发当中就成为一个必须要了解和掌握的知 ...