Automatic Ship Detection in Optical Remote Sensing Images Based on Anomaly Detection and SPP-PCANet
基于异常检测和 PCANet 的船舶目标检测
船舶检测会遇到三个问题:
1、船低对比度
2、海平面情况复杂
3、云,礁等错误检测
实验步骤:
1、预处理海陆边界,掩膜陆地
2、异常检测获得感兴趣区域,多变量高斯分布模型,比最大类间方差和迭代阈值分割效果好
3、PCANet 获得特征,后面接SPP,获得多尺度特征,用SVM分类,最大值抑制得到结果
补充知识:
PCANet 是一个简化的深度学习网络,不用卷积池化等操作,PCANet提出者认为,经典的CNN存在的问题是参数训练时间过长且需要特别的调参技巧。因此他们希望能找到一种训练过程更为简单,且能适应不同任务、不同数据类型的网络模型。
网络用PCA去学习卷积神经网络的卷积核,后面用二值化和哈希去重置像素点,可以非常容易和有效地设计和学习。
Automatic Ship Detection in Optical Remote Sensing Images Based on Anomaly Detection and SPP-PCANet的更多相关文章
- Computer Vision_33_SIFT:Remote Sensing Image Registration With Modified SIFT and Enhanced Feature Matching——2017
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- Missing Data Reconstruction in Remote Sensing Image With a Unified Spatial–Temporal–Spectral Deep Convolutional Neural Network(缺失数据补全,时空谱网络)
摘要 文章针对修复坏波段(AQUA B6),恢复条带损失,恢复云污染提出了一个深度学习网络结构,他说 To date, to the best of our knowledge, no studies ...
- Computer Vision_33_SIFT:Robust scale-invariant feature matching for remote sensing image registration——2009
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- 通过整合遥感数据和社交媒体数据来进行城市土地利用的分类( Classifying urban land use by integrating remote sensing and social media data)DOI: 10.1080/13658816.2017.1324976 20.0204
Classifying urban land use by integrating remote sensing and social media data Xiaoping Liu, Jialv ...
- Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supervised Contrastive Learning Method
论文阅读: Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Sel ...
- 《3-D Deep Learning Approach for Remote Sensing Image Classification》论文笔记
论文题目<3-D Deep Learning Approach for Remote Sensing Image Classification> 论文作者:Amina Ben Hamida ...
- 论文笔记:Chaotic Invariants of Lagrangian Particle Trajectories for Anomaly Detection in Crowded Scenes
[原创]Liu_LongPo 转载请注明出处 [CSDN]http://blog.csdn.net/llp1992 近期在关注 crowd scene方面的东西.由于某些原因须要在crowd scen ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- Isolation-based Anomaly Detection
Anomalies are data points that are few and different. As a result of these properties, we show that, ...
随机推荐
- docker下安装mysql数据库
因为用了.net core 所以想学习下使用docker: 项目中刚好要用到mysql数据库,所用用docker来安装一次,我使用的是5.6版本: 1.拉取官方镜像 docker pull mysql ...
- Windows下使用MongoDb的经验
随着NoSql广泛应用MongoDb这个Json数据库现在也被广泛使用,接下来简单介绍一下Windows下如使安装使用MongoDb. 一.安装MongoDb 1.首先去官方网址:(https://w ...
- copy file
import io,,,,,,, from https://pub.dev/packages/large_file_copy Directory directory = await getApplic ...
- 【转载】 C#中decimal.TryParse方法和decimal.Parse方法的异同之处
在C#编程过程中,decimal.TryParse方法和decimal.Parse方法都可以将字符串string转换为decimal类型,但两者还是有区别,最重要的区别在于decimal.TryPar ...
- 彻底弄懂ES6中的Map和Set
Map Map对象保存键值对.任何值(对象或者原始值) 都可以作为一个键或一个值.构造函数Map可以接受一个数组作为参数. Map和Object的区别 一个Object 的键只能是字符串或者 Symb ...
- 正则表达式修饰符 i、g、m、s、U、x、a、D、e 等。
正则表达式中常用的模式修正符有i.g.m.s.U.x.a.D.e 等. 它们之间可以组合搭配使用. i 不区分(ignore)大小写: 例如: /abc/i 可以匹配 abc.aBC.Abc g 全局 ...
- EFCore 中执行存储过程返回DataSet DataTable
在项目中由于需求,需要返回复杂的数据,需要执行存储过程,但是在DONETCORE2.0中,看官网文档执行的sql的有点操蛋,满足不了需求,就想到了ADO.NET 于是找资料,也没有合适的,就动手自己封 ...
- EF 拉姆达 linq if else (整理)
首先想到: var data0 = db.T_Plants2; //这里加.AsQueryable() ) { .Where(d => d.NaturalEcosystem == true); ...
- RocketMQ在CentOS7上安装
需要先以下组件 1.64bit OS, Linux/Unix/Mac is recommended;2.64bit JDK 1.8+; 安装了 Java JDK 就可以运行 RocketMQ 了 3. ...
- emqx配置ssl
1.生产自签证书 mkdir /etc/emqttd/certs/ && cd /etc/emqttd/certs/ openssl genrsa -out ca-key.pem 20 ...