题目

给定一个长度为n(n<=5000)的由['0'..'9']组成的字符串s,v[i,j]表示由字符串s第i到第j位组成的十进制数字。

将它的某一个上升序列定义为:将这个字符串切割成m段不含前导'0'的串,切点分别为k1,k2...km-1,使得v[1,k1]<v[k1+1,k2]<...<v[km-2,km-1]。

请你求出该字符串s的上升序列个数,答案对 10^9+7 取模。

题解

对于这种dp题,如果没有思路,我们可以先从最暴力的搜索开始分析,然后逐步优化

版本1

深搜枚举每一段的起点,搜完后逐段验证。

版本2

发现只要记录当前起点,终点,就可以描述出所有的后续状态,从而实现记忆化搜索。

版本3

把深搜改造成从后往前的dp,开两维记录起点、终点。时间复杂度:$O(n^3)$

版本4

把匹配过程改进,通过dp预处理出所有串的lcp,将匹配过程跳至不相等处。时间复杂度:$O(n^2)$

总结

设发$f[i][j]$表示起点为i,区间长度为j的方案数

那么本段范围为$[i,i+j)$,下一段的终点$>=i+j*2-1$

考虑状态转移:

若当前段比下一段小,则

$f[i][j] = f[i+j][j] + f[i+j][j+1] + ... + f[i+j][n-i]$

否则

$f[i][j] = f[i+j][j+1] + f[i+j][j+2] + ... + f[i+j][n-i]$

但是如果这样枚举会变成$O(n^3)$

我们可以使用后缀和来加速过程。

代码

#include <iostream>
#include <cstdio>
#define N 5001
#define int long long
#define mod (int)1e9+7
using namespace std;
char str[N];
int dp[N][N],n,lcp[N][N];
int compare(int a,int b)
{
int t=min(lcp[a][b],b-a-1);
return str[a+t]<str[b+t];
}
signed main()
{
cin>>n;
scanf("%s",str+1);
for(int i=n;i;i--)//lcp[i][j]表示从str[i,n]和str[j,n]的lcp
{
for(int j=i+1;j<=n;j++)
{
if(str[i]==str[j]) lcp[i][j]=lcp[i+1][j+1]+1;
}
}
for(int i=n;i;i--)//枚举起点
{
if(str[i]=='0') continue;
dp[i][n-i+1]=1;//起点到n划为一块
for(int j=1;j<=n-i;j++)//枚举区间长度,同时也是下一个起点的位置
{
if(compare(i,i+j)) dp[i][j]=dp[i+j][j];//等同于公式1
else dp[i][j]=dp[i+j][j+1];//等同于公式2
}
for(int j=n-i;j;j--)//维护后缀和
{
//cout<<dp[i][j]<<" ";
dp[i][j]+=dp[i][j+1],dp[i][j]%=mod;
}
//cout<<endl;
}
cout<<dp[1][1];
}

  

  

 

【测试题】sequence的更多相关文章

  1. oracle SEQUENCE 创建, 修改,删除

    oracle创建序列化: CREATE SEQUENCE seq_itv_collection            INCREMENT BY 1  -- 每次加几个              STA ...

  2. Oracle数据库自动备份SQL文本:Procedure存储过程,View视图,Function函数,Trigger触发器,Sequence序列号等

    功能:备份存储过程,视图,函数触发器,Sequence序列号等准备工作:--1.创建文件夹 :'E:/OracleBackUp/ProcBack';--文本存放的路径--2.执行:create or ...

  3. DG gap sequence修复一例

    环境:Oracle 11.2.0.4 DG 故障现象: 客户在备库告警日志中发现GAP sequence提示信息: Mon Nov 21 09:53:29 2016 Media Recovery Wa ...

  4. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  5. [LeetCode] Sequence Reconstruction 序列重建

    Check whether the original sequence org can be uniquely reconstructed from the sequences in seqs. Th ...

  6. [LeetCode] Binary Tree Longest Consecutive Sequence 二叉树最长连续序列

    Given a binary tree, find the length of the longest consecutive sequence path. The path refers to an ...

  7. [LeetCode] Verify Preorder Sequence in Binary Search Tree 验证二叉搜索树的先序序列

    Given an array of numbers, verify whether it is the correct preorder traversal sequence of a binary ...

  8. [LeetCode] Longest Consecutive Sequence 求最长连续序列

    Given an unsorted array of integers, find the length of the longest consecutive elements sequence. F ...

  9. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

随机推荐

  1. Visual Studio 重命名项目名

    1. 打开VS Studio,重命名项目 2. 重命名对应的项目文件夹,并重命名项目文件夹下的这两个文件名: 3. 用记事本打开解决方案,修改对应的项目名字和路径 未完 ...... 点击访问原文(进 ...

  2. linux或者shell进入vi命令

    vi的基本操作 a) 进入vi     在系统提示符号输入vi及文件名称后,就进入vi全屏幕编辑画面: $ vi file  不过有一点要特别注意,就是您进入vi之后,是处于「命令行模式(comman ...

  3. 推荐算法之E&E

    一.定义 E&E就是探索(explore)和利用(exploit). Exploit:基于已知最好策略,开发利用已知具有较高回报的item(贪婪.短期回报),对于推荐来讲就是用户已经发现的兴趣 ...

  4. C++ 中的静态成员函数与静态成员变量

    于CSDN 2014-01-17 与静态数据成员一样,静态成员函数是类的一部分,而不是对象的一部分.如果要在类外调用公用的静态成员函数,要用类名和域运算符"∷".如Box∷volu ...

  5. 当前标识(IIS APPPOOL\DefaultAppPool)没有对“C:\Windows\Microsoft.NET\Framework64\v4.0.30319\Temporary ASP.NET Files”的写访问权限

    找到或增加这个目录,给他增加权限.

  6. VUE组件3 数据流和.sync修饰符

    单向数据流:数据通过prop从父组件传递到子组件中,当父级组件中的数据更新时,传子组件也会更新,但不能在子组件中修改.防止子组件在无意中修改,改变父级组件状态 然而,双向数据绑定在某些情况下有用.如果 ...

  7. Vue学习之路由vue-router传参及嵌套小结(十)

    一.路由传递参数: 1.使用query传值: <!DOCTYPE html> <html lang="en"> <head> <meta ...

  8. js之正则

    1.正则的声明方法 1)var reg = /abc/; "这个叫对象直接量方式": 2)var reg = new RegExp("abc") 这个叫构造函数 ...

  9. 英语orientaljasper鸡血石orientaljasper单词

    鸡血石(orientaljasper),是辰砂条带的地开石,因鲜红色似鸡血的辰砂(朱砂)而得名.鸡血石含有辰砂(朱砂).石英.玉髓35%-45%.磁铁矿.赤铁矿6%-12%.辰砂约5%-8%. 鸡血石 ...

  10. DataPipeline丨构建实时数据集成平台时,在技术选型上的考量点

    文 | 陈肃 DataPipeline  CTO 随着企业应用复杂性的上升和微服务架构的流行,数据正变得越来越以应用为中心. 服务之间仅在必要时以接口或者消息队列方式进行数据交互,从而避免了构建单一数 ...