[HNOI2012]集合选数(构造,状态压缩,DP)
神仙题。
莫名其妙的就试一试把所有数放进一个类似矩阵的东西里面。
首先把 \(1\) 放到左上角,然后在每个数的右边放它的 \(3\) 倍(大于 \(n\) 就不用放了),下面放它的 \(2\) 倍(大于 \(n\) 就不用放了)。
注意这样子有些数会不在里面。那么从小到大,每次选最小的且没有出现过的数作为一个新的“矩阵”的左上角。容易发现这些“矩阵”互不干扰,对每个矩阵分别求方案数,乘起来就好了。
对于一个矩阵,发现就是对于一个数,如果它选了,那么它右边和下面的都不能选。
问题就变成选一些数,互不相邻的方案数。
由于这个矩阵不会太大(长和宽都是 \(\log\) 级别的),所以直接状压。
时间复杂度,大力分析一波(我的分析特别松,首先假设所有矩阵都是满的,也就是右下角不会空出一块,然后状压时也不考虑能不能删掉无用状态),会得到一个极其松的上界 \(3\times 10^7\)。状压 DP 时剪掉无用状态,就能跑得飞快了。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=100010,mod=1000000001;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
char ch=getchar();ll x=0,f=0;
while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
return f?-x:x;
}
int n,ans=1,len[18],f[18][2048],ok[2048],ol;
bool vis[maxn];
bool check(int x){
FOR(i,0,11) if((x>>i)&(x>>(i+1))&1) return false;
return true;
}
int solve(int x){
int y=x,w,s=0;
FOR(i,1,n){
if(y>n) break;
int z=y;
FOR(j,1,n){
if(z>n) break;
len[i]=j;
vis[z]=true;
z*=3;
}
w=i;
y*=2;
}
FOR(i,1,ol){
if(ok[i]>=(1<<len[1])) break;
f[1][i]=1;
if(w==1) s=(s+1)%mod;
}
FOR(i,2,w) FOR(j,1,ol){
if(ok[j]>=(1<<len[i])) break;
f[i][j]=0;
FOR(k,1,ol){
if(ok[k]>=(1<<len[i-1])) break;
if(!(ok[j]&ok[k])) f[i][j]=(f[i][j]+f[i-1][k])%mod;
}
if(i==w) s=(s+f[i][j])%mod;
}
return s;
}
int main(){
n=read();
FOR(i,0,2047) if(check(i)) ok[++ol]=i;
FOR(i,1,n) if(!vis[i]) ans=1ll*ans*solve(i)%mod;
printf("%d\n",ans);
}
[HNOI2012]集合选数(构造,状态压缩,DP)的更多相关文章
- [BZOJ2734][HNOI2012] 集合选数(状态压缩+思维)
Description 题目链接 Solution 可以根据条件构造出一个矩阵, 1 3 9 27 81... 2 6 18.... 4 12 36... 这个矩阵满足\(G[i][1]=G[i-1] ...
- 【BZOJ2734】【HNOI2012】集合选数(状态压缩,动态规划)
[BZOJ2734][HNOI2012]集合选数(状态压缩,动态规划) 题面 Description <集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所 ...
- BZOJ 2734 洛谷 3226 [HNOI2012]集合选数【状压DP】【思维题】
[题解] 思维题,看了别人的博客才会写. 写出这样的矩阵: 1,3,9,... 2,6,18,... 4,12.36,... 8,24,72,... 我们要做的就是从矩阵中选出一些数字,但是不能选相邻 ...
- [HNOI2012]集合选数(状压DP+构造)
题目要求若出现x,则不能出现2x,3x 所以我们考虑构造一个矩阵 \(1\ 2\ 4 \ 8--\) \(3\ 6\ 12\ 24--\) \(9\ 18\ 36--\) \(--\) 不难发现,对于 ...
- BZOJ3724 [HNOI2012]集合选数 【状压dp】
题目链接 BZOJ3724 题解 构造矩阵的思路真的没想到 选\(x\)就不能选\(2x\)和\(3x\),会发现实际可以转化为矩阵相邻两项 \[\begin{matrix}1 & 3 &am ...
- BZOJ2734 HNOI2012集合选数(状压dp)
完全想不到的第一步是构造一个矩阵,使得每行构成公比为3的等比数列,每列构成公比为2的等比数列.显然矩阵左上角的数决定了这个矩阵,只要其取遍所有既不被2也不被3整除的数那么所得矩阵的并就是所有的数了,并 ...
- bzoj2734:[HNOI2012]集合选数(状压DP)
菜菜的喵喵题~ 化序列为矩阵!化腐朽为神奇!左上角为1,往右每次*3,往下每次*2,这样子就把问题转化成了在矩阵里选不相邻的数有几种可能. 举个矩阵的例子 1 3 9 27 2 6 18 54 4 1 ...
- BZOJ_2734_[HNOI2012]集合选数_构造+状压DP
BZOJ_2734_[HNOI2012]集合选数_构造+状压DP 题意:<集合论与图论>这门课程有一道作业题,要求同学们求出{1, 2, 3, 4, 5}的所有满足以 下条件的子集:若 x ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
随机推荐
- mongodb 更新数据时int32变为double的解决办法 & 教程
https://www.runoob.com/mongodb/mongodb-mongodump-mongorestore.html mongodb 更新数据时int32变为double的解决办法 ...
- 2019-9-18-WPF-如何调试-binding
原文:2019-9-18-WPF-如何调试-binding title author date CreateTime categories WPF 如何调试 binding lindexi 2019- ...
- mysql建表中auto_increment=21
CREATE TABLE `demo` ( `id` ) NOT NULL AUTO_INCREMENT, `img` ) DEFAULT NULL COMMENT '大图', `status` ) ...
- "初识".Net Winfom
对于“初识”Winform中 初识这两个字的涵义,实际上之前我一直接触的是B/S方面的知识和开发,虽然说不上是熟练,但是大部分时间都是花在B/S上了,例如MVC,如今要从B/S转到C/S了,说实话心里 ...
- WEBAPI获取数据
在大学学期期间学习的从mvc中的webapi中取数据 直接看代码 首先是控制器中的 using System; using System.Collections.Generic; using Syst ...
- Python - 运算符 - 第五天
Python语言支持以下类型的运算符 算术运算符 比较(关系)运算符 赋值运算符 逻辑运算符 位运算符 成员运算符 身份运算符 运算符优先级 Python算术运算符 以下假设变量a为10,变量b为21 ...
- asp.net发布后其他电脑部署——未能加载文件或程序集 System.Web.Mvc, Version=2.0.0.0, Culture=neutral,
本机测试及发布使用正常 在项目中添加了引用但相关dll文件未在bin文件夹中 导致发布后部署其他电脑未能加载程序集 网上说要下载相关内容在部署服务器安装 但怕在服务器安装出现其他问题 所以在项目中重新 ...
- OSI七层模型简述
一.OSI七层参考模型 开放式系统互联通信参考模型(英语:Open System Interconnection Reference Model,缩写为 OSI),简称为OSI模型(OSI model ...
- IO流总结---- 字节流 ,字符流, 序列化 ,数据操作流,打印流 , Properties 集合
笔记内容: 什么是流 字节流 字符流 序列化 数据操作流(操作基本数据类型的流)DataInputStream 打印流 Properties 集合 什么是流: 流是个抽象的概念,是对输入输出设备的抽象 ...
- 在React中使用react-router-dom路由
1,路由组件的基本实现 使用React构建的单页面应用,要想实现页面间的跳转,首先想到的就是使用路由.在React中,常用的有两个包可以实现这个需求,那就是react-router和react-rou ...