JAVA并发编程: CAS和AQS
说起JAVA并发编程,就不得不聊聊CAS(Compare And Swap)和AQS了(AbstractQueuedSynchronizer
)。
CAS(Compare And Swap)
什么是CAS
CAS(Compare And Swap),即比较并交换。是解决多线程并行情况下使用锁造成性能损耗的一种机制,CAS操作包含三个操作数——内存位置(V)、预期原值(A)和新值(B)。如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值。否则,处理器不做任何操作。无论哪种情况,它都会在CAS指令之前返回该位置的值。CAS有效地说明了“我认为位置V应该包含值A;如果包含该值,则将B放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。
在JAVA中,sun.misc.Unsafe
类提供了硬件级别的原子操作来实现这个CAS。 java.util.concurrent
包下的大量类都使用了这个 Unsafe.java
类的CAS操作。至于 Unsafe.java
的具体实现这里就不讨论了。
CAS典型应用
java.util.concurrent.atomic
包下的类大多是使用CAS操作来实现的(eg. AtomicInteger.java
,AtomicBoolean
,AtomicLong
)。下面以 AtomicInteger.java
的部分实现来大致讲解下这些原子类的实现。
public class AtomicInteger extends Number implements java.io.Serializable {
private static final long serialVersionUID = 6214790243416807050L;
// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private volatile int value;// 初始int大小
// 省略了部分代码...
// 带参数构造函数,可设置初始int大小
public AtomicInteger(int initialValue) {
value = initialValue;
}
// 不带参数构造函数,初始int大小为0
public AtomicInteger() {
}
// 获取当前值
public final int get() {
return value;
}
// 设置值为 newValue
public final void set(int newValue) {
value = newValue;
}
//返回旧值,并设置新值为 newValue
public final int getAndSet(int newValue) {
/**
* 这里使用for循环不断通过CAS操作来设置新值
* CAS实现和加锁实现的关系有点类似乐观锁和悲观锁的关系
* */
for (;;) {
int current = get();
if (compareAndSet(current, newValue))
return current;
}
}
// 原子的设置新值为update, expect为期望的当前的值
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
// 获取当前值current,并设置新值为current+1
public final int getAndIncrement() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return current;
}
}
// 此处省略部分代码,余下的代码大致实现原理都是类似的
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
一般来说在竞争不是特别激烈的时候,使用该包下的原子操作性能比使用 synchronized
关键字的方式高效的多(查看getAndSet()
,可知如果资源竞争十分激烈的话,这个for循环可能换持续很久都不能成功跳出。不过这种情况可能需要考虑降低资源竞争才是)。
在较多的场景我们都可能会使用到这些原子类操作。一个典型应用就是计数了,在多线程的情况下需要考虑线程安全问题。通常第一映像可能就是:
public class Counter {
private int count;
public Counter(){}
public int getCount(){
return count;
}
public void increase(){
count++;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
上面这个类在多线程环境下会有线程安全问题,要解决这个问题最简单的方式可能就是通过加锁的方式,调整如下:
public class Counter {
private int count;
public Counter(){}
public synchronized int getCount(){
return count;
}
public synchronized void increase(){
count++;
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
这类似于悲观锁的实现,我需要获取这个资源,那么我就给他加锁,别的线程都无法访问该资源,直到我操作完后释放对该资源的锁。我们知道,悲观锁的效率是不如乐观锁的,上面说了Atomic下的原子类的实现是类似乐观锁的,效率会比使用 synchronized
关系字高,推荐使用这种方式,实现如下:
public class Counter {
private AtomicInteger count = new AtomicInteger();
public Counter(){}
public int getCount(){
return count.get();
}
public void increase(){
count.getAndIncrement();
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
AQS(AbstractQueuedSynchronizer
)
什么是AQS
AQS(AbstractQueuedSynchronizer
),AQS是JDK下提供的一套用于实现基于FIFO等待队列的阻塞锁和相关的同步器的一个同步框架。这个抽象类被设计为作为一些可用原子int值来表示状态的同步器的基类。如果你有看过类似 CountDownLatch
类的源码实现,会发现其内部有一个继承了 AbstractQueuedSynchronizer
的内部类 Sync
。可见 CountDownLatch
是基于AQS框架来实现的一个同步器.类似的同步器在JUC下还有不少。(eg. Semaphore
)
AQS用法
如上所述,AQS管理一个关于状态信息的单一整数,该整数可以表现任何状态。比如, Semaphore
用它来表现剩余的许可数,ReentrantLock
用它来表现拥有它的线程已经请求了多少次锁;FutureTask
用它来表现任务的状态(尚未开始、运行、完成和取消)
To use this class as the basis of a synchronizer, redefine the
* following methods, as applicable, by inspecting and/or modifying
* the synchronization state using {@link #getState}, {@link
* #setState} and/or {@link #compareAndSetState}:
*
* <ul>
* <li> {@link #tryAcquire}
* <li> {@link #tryRelease}
* <li> {@link #tryAcquireShared}
* <li> {@link #tryReleaseShared}
* <li> {@link #isHeldExclusively}
* </ul>
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
如JDK的文档中所说,使用AQS来实现一个同步器需要覆盖实现如下几个方法,并且使用getState
,setState
,compareAndSetState
这几个方法来设置获取状态
boolean tryAcquire(int arg)
boolean tryRelease(int arg)
int tryAcquireShared(int arg)
boolean tryReleaseShared(int arg)
boolean isHeldExclusively()
以上方法不需要全部实现,根据获取的锁的种类可以选择实现不同的方法,支持独占(排他)获取锁的同步器应该实现tryAcquire
、 tryRelease
、isHeldExclusively
而支持共享获取的同步器应该实现tryAcquireShared
、tryReleaseShared
、isHeldExclusively
。下面以 CountDownLatch
举例说明基于AQS实现同步器, CountDownLatch
用同步状态持有当前计数,countDown
方法调用 release从而导致计数器递减;当计数器为0时,解除所有线程的等待;await
调用acquire,如果计数器为0,acquire
会立即返回,否则阻塞。通常用于某任务需要等待其他任务都完成后才能继续执行的情景。源码如下:
public class CountDownLatch {
/**
* 基于AQS的内部Sync
* 使用AQS的state来表示计数count.
*/
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
// 使用AQS的getState()方法设置状态
setState(count);
}
int getCount() {
// 使用AQS的getState()方法获取状态
return getState();
}
// 覆盖在共享模式下尝试获取锁
protected int tryAcquireShared(int acquires) {
// 这里用状态state是否为0来表示是否成功,为0的时候可以获取到返回1,否则不可以返回-1
return (getState() == 0) ? 1 : -1;
}
// 覆盖在共享模式下尝试释放锁
protected boolean tryReleaseShared(int releases) {
// 在for循环中Decrement count直至成功;
// 当状态值即count为0的时候,返回false表示 signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
private final Sync sync;
// 使用给定计数值构造CountDownLatch
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
// 让当前线程阻塞直到计数count变为0,或者线程被中断
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
// 阻塞当前线程,除非count变为0或者等待了timeout的时间。当count变为0时,返回true
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
// count递减
public void countDown() {
sync.releaseShared(1);
}
// 获取当前count值
public long getCount() {
return sync.getCount();
}
public String toString() {
return super.toString() + "[Count = " + sync.getCount() + "]";
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
AQS实现原理浅析
AQS的实现主要在于维护一个volatile int state(代表共享资源)和一个FIFO线程等待队列(多线程争用资源被阻塞时会进入此队列)。队列中的每个节点是对线程的一个封装,包含线程基本信息,状态,等待的资源类型等。
CLH结构如下:
* +------+ prev +-----+ +-----+
* head | | <---- | | <---- | | tail
* +------+ +-----+ +-----+
- 1
- 2
- 3
下面简单看下获取资源的代码:
public final void acquire(int arg) {
// 首先尝试获取,不成功的话则将其加入到等待队列,再for循环获取
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
// 从clh中选一个线程获取占用资源
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
// 当节点的先驱是head的时候,就可以尝试获取占用资源了tryAcquire
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
// 如果获取到资源,则将当前节点设置为头节点head
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
// 如果获取失败的话,判断是否可以休息,可以的话就进入waiting状态,直到被unpark()
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private Node addWaiter(Node mode) {
// 封装当前线程和模式为新的节点,并将其加入到队列中
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) {
// tail为null,说明还没初始化,此时需进行初始化工作
if (compareAndSetHead(new Node()))
tail = head;
} else {
// 否则的话,将当前线程节点作为tail节点加入到CLH中去
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
详细参考:Java并发之AQS详解
本文大致就讲了这些东西,有些地方说的也不是特别好。也有不全的地方,AQS的东西还是有不少的,建议大家自己去看JUC下的各个类的实现,配合《JAVA并发编程实战》这本书,相信是可以看明白的,从而得到更深刻的理解。
JAVA并发编程: CAS和AQS的更多相关文章
- 【Java并发编程实战】----- AQS(三):阻塞、唤醒:LockSupport
在上篇博客([Java并发编程实战]----- AQS(二):获取锁.释放锁)中提到,当一个线程加入到CLH队列中时,如果不是头节点是需要判断该节点是否需要挂起:在释放锁后,需要唤醒该线程的继任节点 ...
- 【Java并发编程实战】----- AQS(四):CLH同步队列
在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形.其主要从两方面进行了改造:节点的结构与节点等待机制.在结构上引入了头 ...
- Java并发编程总结3——AQS、ReentrantLock、ReentrantReadWriteLock(转)
本文内容主要总结自<Java并发编程的艺术>第5章——Java中的锁. 一.AQS AbstractQueuedSynchronizer(简称AQS),队列同步器,是用来构建锁或者其他同步 ...
- Java并发编程-看懂AQS的前世今生
在具备了volatile.CAS和模板方法设计模式的知识之后,我们可以来深入学习下AbstractQueuedSynchronizer(AQS),本文主要想从AQS的产生背景.设计和结构.源代码实现及 ...
- Java并发编程总结3——AQS、ReentrantLock、ReentrantReadWriteLock
本文内容主要总结自<Java并发编程的艺术>第5章——Java中的锁. 一.AQS AbstractQueuedSynchronizer(简称AQS),队列同步器,是用来构建锁或者其他同步 ...
- 【Java并发编程实战】—– AQS(四):CLH同步队列
在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形. 其主要从双方面进行了改造:节点的结构与节点等待机制.在结构上引入了 ...
- 【Java并发编程实战】----- AQS(二):获取锁、释放锁
上篇博客稍微介绍了一下AQS,下面我们来关注下AQS的所获取和锁释放. AQS锁获取 AQS包含如下几个方法: acquire(int arg):以独占模式获取对象,忽略中断. acquireInte ...
- Java并发编程:用AQS写一把可重入锁
Java并发编程:自己动手写一把可重入锁详述了如何用synchronized同步的方式来实现一把可重入锁,今天我们来效仿ReentrantLock类用AQS来改写一下这把锁.要想使用AQS为我们服务, ...
- 【并发编程】Java并发编程-看懂AQS的前世今生
在我们可以深入学习AbstractQueuedSynchronizer(AQS)之前,必须具备了volatile.CAS和模板方法设计模式的知识,本文主要想从AQS的产生背景.设计和结构.源代码实现及 ...
随机推荐
- 移动前端viewPort的那些事
1.viewport简单说 一般来说,移动上的viewport都是大于浏览器窗口的,不同的设备有自己默认的viewport值(980px或1024px). 2.三个viewport的理解(layout ...
- ObjC: 委托模式
转自:http://marshal.easymorse.com/tech/objc-%e5%a7%94%e6%89%98%e6%a8%a1%e5%bc%8f 在ObjC中,经常提到委托模式(deleg ...
- docker 部署mysql redis
先介绍利用的两个数据卷挂载的规则,这对于理解挂载mysql数据库存储非常有帮助. 如果挂载一个空的数据卷到容器中的一个非空目录中,那么这个目录下的文件会被复制到数据卷中. 如果挂载一个非空的数据卷到容 ...
- 盘点当下大热的7大Github机器学习创新项目
哪个平台有最新的机器学习发展现状和最先进的代码?没错——Github!本文将会分享近期发布的七大GitHub机器学习项目.这些项目广泛覆盖了机器学习的各个领域,包括自然语言处理(NLP).计算机视觉. ...
- django framework插件类视图方法
1.使用类视图APIView重写API 类视图APIView,取代@api_view装饰器,代码如下: from rest_framework import status from rest_fram ...
- The field file exceeds its maximum permitted size of 1048576 bytes.
问题原因:Spring Boot内置tomcat限制了请求文件的大小 下面是修改方法:根据自己的Spring Boot版本 2.0之后版本的修改方式 在主配置文件 application.proper ...
- linux突然不能上网,eth0网卡消失
情况:之前可以正常浏览网页,没有动其它的地方,浏览器突然不能上网 ifconfig # 发现eth0网卡不见了,只有lo卡 ifconfig -a # 发现了eth0,但是没有IP地址 dhclien ...
- TypeScript 解构和展开
解构数组 解构数组元素 let input = [1, 2]; let [first, second] = input; console.log(first,second); 交换值 [first, ...
- 云服务器使用: 购买域名,域名绑定IP
有没有不知道域名是什么的,但是大家一定知道访问域名就是访问绑定在域名上的IP地址 域名有个好处就是一个域名可以绑定多个IP. 举个例子:百度的域名是https://www.baidu.com/ 然后咱 ...
- 算法——回文(palindrome)
回文(palindrome):指的是从头读到尾与从尾读到头一模一样的字符串. 分别在C.Java与Python实现回文检测: C: #include <stdio.h> #include ...