Result文件数据说明:

Ip:106.39.41.166,(城市)

Date:10/Nov/2016:00:01:02 +0800,(日期)

Day:10,(天数)

Traffic: 54 ,(流量)

Type: video,(类型:视频video或文章article)

Id: 8701(视频或者文章的id)

文件部分如下:

1.192.25.84 2016-11-10-00:01:14 10 54 video 5551 
1.194.144.222 2016-11-10-00:01:20 10 54 video 3589 
1.194.187.2 2016-11-10-00:01:05 10 54 video 2212 
1.203.177.243 2016-11-10-00:01:18 10 6050 video 7361 
1.203.177.243 2016-11-10-00:01:19 10 72 video 7361 
1.203.177.243 2016-11-10-00:01:22 10 6050 video 7361 
1.30.162.63 2016-11-10-00:01:46 10 54 video 3639 
1.84.205.195 2016-11-10-00:01:12 10 54 video 1412 
1.85.61.18 2016-11-10-00:01:31 10 54 video 6578 
1.85.61.37 2016-11-10-00:01:36 10 54 video 7212 
101.200.101.13 2016-11-10-00:01:06 10 524288 video 11938 
101.200.101.201 2016-11-10-00:01:03 10 4468 article 4779 
101.200.101.204 2016-11-10-00:01:10 10 4468 article 11325 
101.200.101.207 2016-11-10-00:01:08 10 4468 article 11325 

流程:

数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中。

两阶段数据清洗:

(1)第一阶段:把需要的信息从原始日志中提取出来

ip:    199.30.25.88

time:  10/Nov/2016:00:01:03 +0800

traffic:  62

文章: article/11325

视频: video/3235

(2)第二阶段:根据提取出来的信息做精细化操作

ip--->城市 city(IP)

date--> time:2016-11-10 00:01:03

day: 10

traffic:62

type:article/video

id:11325

(3)hive数据库表结构:(将清洗出来的文件导入hive表中)

create table if not exists data(
mip string,
mtime string,
mday string,
mtraffic bigint,
mtype string,
mid string)
row format delimited fields terminated by '\t' lines terminated by '\n';//导入数据以'\t'分隔,'\n'换行

源代码:

 
import java.io.IOException;
import java.lang.String;
import java.util.*;
import java.text.SimpleDateFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class Dataclean{
       public static final SimpleDateFormat FORMAT = new SimpleDateFormat("d/MMM/yyyy:HH:mm:ss", Locale.ENGLISH); //原时间格式
       public static final SimpleDateFormat dateformat1 = new SimpleDateFormat("yyyy-MM-dd-HH:mm:ss");//现时间格式
       private  static Date parseDateFormat(String string) {         //转换时间格式
            Date parse = null;
            try {
                parse = FORMAT.parse(string);
            } catch (Exception e) {
                e.printStackTrace();
            }
            return parse;
        }
        public static  String[] parse(String line) {
            String ip = parseIP(line);       //ip
            String time = parseTime(line);   //时间
            String day=parseDay(line);//天数
            String type = parseType(line);     //视频video或文章article
            String id = parseId(line); //视频或者文章的id
            String traffic = parseTraffic(line);//流量
            return new String[] { ip, time,day,traffic,type,id};
        }
       
        private  static  String parseIP(String line) {     //ip
            String ip = line.split(",")[0].trim();//str.trim(); 去掉首尾空格
            return ip;
        }
       
        private  static  String parseTime(String line) {    //时间
            final int first = line.indexOf(",");
            final int last = line.indexOf(" +0800,");
            String time = line.substring(first + 1, last).trim();
            Date date = parseDateFormat(time);
            return dateformat1.format(date);
        }
        private  static  String parseDay(String line) {    //天数
         String day = line.split(",")[2].trim();
            return day;
        }
        private static  String parseTraffic(String line) {    //流量,转为int型
         String traffic= line.split(",")[3].trim();
            return traffic;
        }
        private  static String parseType(String line) { 
         String day = line.split(",")[4].replace(" ", "");
            return day;
        }
        private static String parseId(String line) {   
         String day = line.split(",")[5].replace(" ", "");//去掉所有空格
            return day;
        }
        public static class Map extends Mapper<Object, Text, Text, NullWritable> {
         public static Text word = new Text();
         public void map(Object key, Text value, Context context)throws IOException, InterruptedException {
          // 将输入的纯文本文件的数据转化成String
          String line = value.toString();
          String arr[] = parse(line);
             word.set(arr[0]+"\t"+arr[1]+"\t"+arr[2]+"\t"+arr[3]+"\t"+arr[4]+"\t"+arr[5]+"\t");//一定用'\t',空格容易乱会有意想不到的问题
            context.write(word,NullWritable.get());
         }
        }
        public static class Reduce extends Reducer<Text, NullWritable, Text, NullWritable> {
         // 实现reduce函数
         public void reduce(Text key, Iterable<NullWritable> values,Context context) throws IOException, InterruptedException {
          context.write(key, NullWritable.get());
         }
        }
        public static void main(String[] args) throws Exception {
         Configuration conf=new Configuration();  
   System.out.println("start");
   Job job=Job.getInstance(conf);
   job.setJarByClass(Dataclean.class);
   job.setMapperClass(Map.class); 
   job.setReducerClass(Reduce.class);
      job.setOutputKeyClass(Text.class); 
      job.setOutputValueClass(NullWritable.class);//设置map的输出格式
      job.setInputFormatClass(TextInputFormat.class);
      job.setOutputFormatClass(TextOutputFormat.class);
      Path in = new Path("hdfs://localhost:9000/mapReduce/mymapreduce1/result.txt");
      Path out = new Path("hdfs://localhost:9000/mapReduce/mymapreduce1/out");
      FileInputFormat.addInputPath(job,in ); 
      FileOutputFormat.setOutputPath(job,out); 
      boolean flag = job.waitForCompletion(true);
      System.out.println(flag);
      System.exit(flag? 0 : 1);
        }
}
 

 清洗所得部分结果如下:

1.192.25.84  2016-11-10-00:01:14  10  54  video    5551
1.194.144.222 2016-11-10-00:01:20 10 54 video 3589
1.194.187.2 2016-11-10-00:01:05 10 54 video 2212
1.203.177.243 2016-11-10-00:01:18 10 6050 video 7361
1.203.177.243 2016-11-10-00:01:19 10 72 video 7361
1.203.177.243 2016-11-10-00:01:22 10 6050 video 7361
1.30.162.63 2016-11-10-00:01:46 10 54 video 3639
1.84.205.195 2016-11-10-00:01:12 10 54 video 1412
1.85.61.18 2016-11-10-00:01:31 10 54 video 6578
1.85.61.37 2016-11-10-00:01:36 10 54 video 7212

 将清洗文件导入hive数据库表:

hive> create table if not exists data(
    > mip string,
    > mtime string,
    > mday string,
    > mtraffic bigint,
    > mtype string,
    > mid string)
    > row format delimited fields terminated by '\t' lines terminated by '\n';
OK
Time taken: 0.135 seconds
hive> load data local inpath "/home/hadoop/out" into table data; //注:table后边的data是表名,前一个data不用动
Loading data to table default.data
Table default.data stats: [numFiles=1, totalSize=63923]
OK
Time taken: 0.315 seconds
hive> select * from data limit 3;
OK
1.192.25.84 2016-11-10-00:01:14 10 54 video 5551
1.194.144.222 2016-11-10-00:01:20 10 54 video 3589
1.194.187.2 2016-11-10-00:01:05 10 54 video 2212
Time taken: 0.124 seconds, Fetched: 3 row(s)
hive>

查看数据库表数据:

使用mapreduce清洗简单日志文件并导入hive数据库的更多相关文章

  1. Weka里如何将arff文件或csv文件批量导入MySQL数据库(六)

    这里不多说,直接上干货! 前提博客是 Weka中数据挖掘与机器学习系列之数据格式ARFF和CSV文件格式之间的转换(四) 1.将arff文件批量导入MySQL数据库 我在这里,arff文件以Weka安 ...

  2. 数据清洗:按照进行数据清洗,并将清洗后的数据导入hive数据库中。

    虚拟机: hadoop:3.2.0 hive:3.1.2 win10: eclipse 两阶段数据清洗: (1)第一阶段:把需要的信息从原始日志中提取出来 ip:    199.30.25.88 ti ...

  3. SQL Server日志文件过大 大日志文件清理方法 不分离数据库

    SQL Server日志文件过大    大日志文件清理方法 ,网上提供了很多分离数据库——〉删除日志文件-〉附加数据库 的方法,此方法风险太大,过程也比较久,有时候也会出现分离不成功的现象.下面的方式 ...

  4. mariadb审计日志通过 logstash导入 hive

    我们使用的 mariadb, 用的这个审计工具 https://mariadb.com/kb/en/library/mariadb-audit-plugin/ 这个工具一点都不考虑后期对数据的处理, ...

  5. 【转】SQL Server日志文件过大 大日志文件清理方法 不分离数据库

    https://blog.csdn.net/slimboy123/article/details/54575592 还未测试 USE[master] GO ALTER DATABASE 要清理的数据库 ...

  6. SQL Server清理大日志文件方法 不分离数据库 执行SQL语句即可

    SQL 2008清空日志的SQL语句如下: USE[master] GO ALTER DATABASE 要清理的数据库名称 SET RECOVERY SIMPLE WITH NO_WAIT GO AL ...

  7. 误删SQL Server日志文件后怎样附加数据库

    SQL Server日志文件因为误操作被删除,当附加数据库的时候提示:附加数据库失败. 解决办法如下: 1.新建一个同名数据库. 2.停止数据库服务,覆盖新建的数据库主文件(小技巧:最好放在同一个磁盘 ...

  8. .frm文件怎么导入到数据库

    如题想搞个私服游戏,但是数据库文件按文档的操作方法行不通.只能自行导入. 其实.frm文件就是mysql表结构文件,你拷贝data那一块的文件到你电脑安装的mysql的data文件下就行了. 一.首先 ...

  9. sql文件批量导入mysql数据库

    有一百多个sql文件肿么破?一行一行地导入数据库肯定是极其愚蠢的做法,但是我差点就这么做了... 网上首先找到的方法是:写一个xxx.sql文件,里边每一行都是source *.sql ...,之后再 ...

随机推荐

  1. .NET中的异步编程——动机和单元测试

    背景 自.NET 4.5发布以来已经有很长一段时间了.留在了我们的记忆里,其发布在2012年8月15日.是的,六年前.感觉老了吗?好吧,我不打算让你做出改变,而是提醒你一些.NET发布的亮点.此版本带 ...

  2. js/jquery键盘事件及keycode大全

    js/jquery的键盘事件分为keypress.keydown和keyup事件 一.键盘事件 1.keydown()事件当按钮被按下时,发生 keydown 事件. 2.keypress()事件ke ...

  3. TinyXPath 对于xpath标准的支持测试

    xpath是一种基于xml的查询标准,一般的xml解析工具都具有,有的因为卓越的xpath性能而出名,其匹配查询算法牛逼而又高效,和正则有的一拼.虽然我现在大部分从事前端工作了,但是对于原理性的东西还 ...

  4. 【转载】C#中ArrayList集合类使用RemoveAt方法移除指定索引的元素

    ArrayList集合是C#中的一个非泛型的集合类,是弱数据类型的集合类,可以使用ArrayList集合变量来存储集合元素信息,任何数据类型的变量都可加入到同一个ArrayList集合中,在Array ...

  5. 汽车行业如何个性化定制转型?看APS系统在这家企业的运用

    传统汽车行业中往往采用的是按库存推动式生产,一旦市场产生变动就会造成大量的生产,给企业带来大批的资金压力,而另一方面采用按单生产的方式企业往往面临供应链,产能的诸多约束条件限制,稍有不慎就会带来产线停 ...

  6. 你能想象未来的MES系统是什么样吗?

    “智能制造”热潮席卷神州大地,在工业4.0热潮,以及国家大力推进中国制造2025的背景下,建设智能工厂,推进智能制造已成为制造企业共同的目标.作为承上启下的车间级综合信息系统,MES系统得到了制造企业 ...

  7. Spring中获取外部配置文件中的属性值

    很多时候需要将配置信息从程序中剥离粗来,Spring现在提供的方法是通过@Value注解和<context:placeholder>来获取配置文件中的配置信息.这里给出一个简单的例子. 首 ...

  8. HttpUtils请求工具类

    package com.cmcc.hybj.payment.framework.https; import java.io.UnsupportedEncodingException;import ja ...

  9. 石子合并问题--直线版 HRBUST - 1818

    t题目链接:https://vjudge.net/problem/HRBUST-1818 思路:一段已经合并的区间,分成两段区间,遍历所有能分开的区间. 代码有注释,基本就这样一个简单是思路. #in ...

  10. XML炸弹

    XML炸弹XML document type definition (DTD)可以定义entity,DTD可以出现在外部文件或文件内部.利用DTD可以产生XML炸弹,也就是能迅速占用大量内存的文件,如 ...