从CNN到GCN的联系与区别:

https://www.zhihu.com/question/54504471/answer/332657604

更加详解Laplacian矩阵:

https://www.zhihu.com/question/54504471/answer/630639025

GCN 实践:

https://mp.weixin.qq.com/s/sg9O761F0KHAmCPOfMW_kQ

深度学习时代的图模型,图网络综述:

https://mp.weixin.qq.com/s/WW-URKk-fNct9sC4bJ22eg

一、GCN图卷积神经网络

1.算法创新

卷积神经网络CNN主要应用于图像领域,但CNN处理的数据是具有显著标准的空间结构的,而网络拓扑图的数据并不具有标准空间结构。GCN 是对CNN在图论上的自然推广,GCN理论基础是谱图理论。

本质上,GCN 是谱图卷积的局部一阶近似,可以用于对局部图结构与节点特征信息进行编码生成节点Embedding。GCN适用性极广,能适用于任意网络拓扑结构图。

2.算法原理

GCN算法原理主要包括传播、聚合和非线性变换,具体解释如下:

传播是指图中的每一个节点将自身的特征信息发送给相邻的邻居节点。

聚合是指图中每个节点将邻居节点的特征信息汇聚的过程,是对节点的局部结构信息进行融合。局部结构信息可以理解为CNN的感知域,共享卷积核权重,正比于神经网络的层数;迭代开始时,每个节点包含了直接连接邻居的特征信息,当计算神经网络第二层时就能把邻居的邻居节点的特征信息聚合进来,从而使参与运算的信息就更多更充分。

层数越多,感知域就更广,参与运算的节点信息就越多。

对聚合之后特征信息做非线性变换,增加模型的表示能力。

二、GraphSAGE通用归纳框架

1.算法创新

《Inductive Representation Learning on Large Graphs》论文提出了GraphSAGE (SAmple and aggreGatE),是一种归纳框架。

它可以利用节点特征信息来高效地为未出现过的节点生成Node Embedding。它不是为每个节点专门训Embedding,而是训练得到一个函数,这个函数功能是从节点的局部邻居节点采样并聚合特征信息。

图一是采样Sampling,以节点为中心进行广度优先遍历方式采样邻居节点,得到包含中心节点和它的邻居节点的子集。

使用采样一定程度上解决了计算资源压力的问题,使图神经模型可以在大规模图数据集上训练;

图二是训练一组聚合函数,这些函数学习如何从一个节点的局部邻居节点聚合所有的特征信息。

图三是连接中心节点特征信息和聚合来自邻居节点特征信息,预测图的上下文环境和节点的标签类别。

三、图神经网络在反欺诈上应用

在反欺诈领域,根据业务场景构建图,再结合图神经网络技术,挖掘欺诈团伙。

比如反垃圾注册场景,我们可以共用设备来构图,也可以构建账号和设备的异构图,这里的设备主要包括设备的deviceid、mac、imei和imsi等信息,

算法采用图神经网络GCN对图中结构信息和自身的特征进行有效的信息抽取和分析,挖掘垃圾注册团伙,能够大幅提高识别效果。

 
链接:https://zhuanlan.zhihu.com/p/59862502

GCN: Graph Convolutional Network的更多相关文章

  1. Graph Embedding Review:Graph Neural Network(GNN)综述

    作者简介: 吴天龙  香侬科技researcher 公众号(suanfarensheng) 导言 图(graph)是一个非常常用的数据结构,现实世界中很多很多任务可以描述为图问题,比如社交网络,蛋白体 ...

  2. Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition

    Two-Stream Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition 摘要 基于骨架的动作识别因为 ...

  3. 《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》 代码解读

    论文链接:https://arxiv.org/abs/1811.05320 博客原作者Missouter,博客链接https://www.cnblogs.com/missouter/,欢迎交流. 解读 ...

  4. Graph Convolutional Network

    How to do Deep Learning on Graphs with Graph Convolutional Networks https://towardsdatascience.com/h ...

  5. GCN(Graph Convolutional Network)的简单公式推导

    第一步:从前一个隐藏层到后一个隐藏层,对结点进行特征变换 第二步:对第一步进行具体实现 第三步:对邻接矩阵进行归一化(行之和为1) 邻接矩阵A的归一化,可以通过度矩阵D来实现(即通过D^-1*A来实现 ...

  6. 关于Graph Convolutional Network的初步理解

    为给之后关于图卷积网络的科研做知识积累,这里写一篇关于GCN基本理解的博客.GCN的本质是一个图网络中,特征信息的交互+与传播.这里的图指的不是图片,而是数据结构中的图,图卷积网络的应用非常广泛 ,经 ...

  7. 《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》 论文解读

    论文链接:https://arxiv.org/abs/1811.05320 最近发现博客好像会被CSDN和一些奇怪的野鸡网站爬下来?看见有人跟爬虫机器人单方面讨论问题我也蛮无奈的.总之原作者Misso ...

  8. GRAPH CONVOLUTIONAL NETWORK WITH SEQUENTIAL ATTENTION FOR GOAL-ORIENTED DIALOGUE SYSTEMS

    面向领域特定目标的对话系统通常需要建模三种类型的输入,即(i)与领域相关的知识库,(ii)对话的历史(即话语序列)和(iii)需要生成响应的当前话语. 在对这些输入进行建模时,当前最先进的模型(如Me ...

  9. 论文阅读笔记(十)【CVPR2016】:Recurrent Convolutional Network for Video-based Person Re-Identification

    Introduction 该文章首次采用深度学习方法来解决基于视频的行人重识别,创新点:提出了一个新的循环神经网络架构(recurrent DNN architecture),通过使用Siamese网 ...

随机推荐

  1. Locust 教程

    写在 Locust 教程开始的前面 本文参考了: Locust 教程 : https://www.axihe.com/tools/locust/home.html : locust 的官方 Githu ...

  2. TODO的作用及如何使用

    https://blog.csdn.net/jerry11112/article/details/82966142 文章标题:[C#]TODO的作用 可以方便后续找到要做的功能点.

  3. minhash pyspark 源码分析——hash join table是关键

    从下面分析可以看出,是先做了hash计算,然后使用hash join table来讲hash值相等的数据合并在一起.然后再使用udf计算距离,最后再filter出满足阈值的数据: 参考:https:/ ...

  4. SpringBoot -生成Entity和Dto互转的双向枚举类 -使用注解@Mapper(componentModel = "spring")

    1.导入pom文件 ,版本号自定 <!--mapStruct依赖--> <dependency> <groupId>org.mapstruct</groupI ...

  5. 《你们都是魔鬼吗》团队作业Beta冲刺---第一天

    团队作业Beta冲刺 项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 你们都是魔鬼吗 作业学习目标 (1)掌握软件黑盒测试技术:(2)学会编制软件 ...

  6. 《3+1团队》【Beta】Scrum meeting 1

    项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 3+1团队 团队博客地址 https://home.cnblogs.com/u/3-1group ...

  7. 《Exception》第五次作业:项目需求分析改进与系统设计

    一.项目基本介绍 项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 Exception 作业学习目标 1掌握面向对象需求分析方法:2.学习软件系统总 ...

  8. 关闭win10 任务栏窗口预览的步骤:

    win10虽好,但是总有不利于使用的反人类设计,好在可以设置,这也是比较好了的, 作为开发人员,经常会开好几个窗口,但是win10的预览很不好,设计的就是娱乐用途一般,因此必须是把他关了 一下步骤亲自 ...

  9. docker 挂载实现容器配置更改为外部文件

    docker安装镜像后,每个服务都是独立的容器,容器与容器之间可以说是没关系,隔离独立的. 而且虚拟出来的这些容器里面的基本安装工具都是没有的,比如vi,vim等等.需要使用,还得安装处理. 那么我们 ...

  10. CSP-J总结&题解

    总结: 这一次,最后一次,还是不行啊. 文件操作方面:没有FCLOSE,血的教训. 考场复盘: 首先一二题没什么好讲的,秒切.但是第三题由于一开始看出来是完全背包,但是好像又不是,去年又有摆渡车阴影, ...