例子:

df = pd.DataFrame()
df['A'] = [1, 1, 2]
df['B'] = [datetime.date(2018, 1, 2), datetime.date(2018, 1, 3), datetime.date(2018, 1, 3)]
df['C'] = df.groupby('A').B.diff()
df['C'] = df.C.dt.days

 

报错:

Traceback (most recent call last):
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\series.py", line 2820, in _make_dt_accessor
    return maybe_to_datetimelike(self)
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\indexes\accessors.py", line 84, in maybe_to_datetimelike
    "datetimelike index".format(type(data)))
TypeError: cannot convert an object of type <class 'pandas.core.series.Series'> to a datetimelike index During handling of the above exception, another exception occurred: Traceback (most recent call last):
  File "D:/学习/pandas_test/pandas_learn_20190102.py", line 49, in <module>
    test2()
  File "D:/学习/pandas_test/pandas_learn_20190102.py", line 32, in test2
    df['C'] = df.C.dt.days
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\generic.py", line 3077, in __getattr__
    return object.__getattribute__(self, name)
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\base.py", line 243, in __get__
    return self.construct_accessor(instance)
  File "D:\python_virtualenv\common\lib\site-packages\pandas-0.20.3-py3.6-win-amd64.egg\pandas\core\series.py", line 2822, in _make_dt_accessor
    raise AttributeError("Can only use .dt accessor with datetimelike "
AttributeError: Can only use .dt accessor with datetimelike values

原因:
分组求diff后的结果是:

A B C
0 1 2018-01-02 NaT
1 1 2018-01-03 1 days 00:00:00
2 2 2018-01-03 NaN

类型是:

A int64
B object
C object
dtype: object

预想的类型是:

A int64
B object
C timedelta64[ns]
dtype: object

解决:
原本尝试使用astype强制将object列,转成timedelta列

df['C'] = df.C.astype(pd.Timedelta)

这句代码不会报错,但是C列的类型不会改变,没有作用。

最后有两种处理方式:
提前定义B列为时间列:

df = pd.DataFrame()
df['A'] = [1, 1, 2]
df['B'] = [datetime.date(2018, 1, 2), datetime.date(2018, 1, 3), datetime.date(2018, 1, 3)]
df.B = pd.to_datetime(df.B)
df['C'] = df.groupby('A').B.diff()
df['C'] = df.C.dt.days

增加类型转换:

df = pd.DataFrame()
df['A'] = [1, 1, 2]
df['B'] = [datetime.date(2018, 1, 2), datetime.date(2018, 1, 3), datetime.date(2018, 1, 3)]
df['C'] = df.groupby('A').B.diff()
df['C'] = pd.to_timedelta(df.C, unit='d').dt.days

pandas对时间列分组求diff遇到的问题的更多相关文章

  1. pandas如何去掉时间列的小时只保留日期

    最近无聊,想玩玩数据挖掘,就拿天池的天池新人实战赛之[离线赛]练练手.https://tianchi.aliyun.com/getStart/information.htm?spm=5176.1000 ...

  2. Hive - - 分组求最大,最小(加行键)

    Hive - - 分组求最大,最小(加行键) 数据: 1325927 陕西 汉中 084 08491325928 陕西 汉中 084 08491325930 陕西 延安 084 08421325931 ...

  3. POJ-1180 Batch Scheduling (分组求最优值+斜率优化)

    题目大意:有n个任务,已知做每件任务所需的时间,并且每件任务都对应一个系数fi.现在,要将这n个任务分成若干个连续的组,每分成一个组的代价是完成这组任务所需的总时间加上一个常数S后再乘以这个区间的系数 ...

  4. pandas 新增数据列(直接赋值、apply,assign、分条件赋值)

    # pandas新增数据列(直接赋值.apply.assign.分条件赋值) # pandas在进行数据分析时,经常需要按照一定条件创建新的数据列,然后进行进一步分析 # 1 直接赋值 # 2 df. ...

  5. pandas处理csv,分组统计

    需求: /tmp/demo/data下有10个csv文件,按col0和col1分组分别统计col2和col3总和并计算col2和col3的商 # encoding:utf-8 import panda ...

  6. 第2节 网站点击流项目(下):3、流量统计分析,分组求topN

    四. 模块开发----统计分析 select * from ods_weblog_detail limit 2;+--------------------------+---------------- ...

  7. DataTable以列分组

    //DataTable以列分组 var result = from r in dt.AsEnumerable() group r by ), b = r.Field<) } into g sel ...

  8. Sqlite实现默认时间为当前时间列的方法(转)

    原文地址: http://blog.csdn.net/derryzhang/article/details/5033209 在SQL Server中,创建表格的时候,对于时间列有时候我们可以根据需要指 ...

  9. devexpress表格控件gridcontrol图片列,按钮列,时间列等特殊列的实现

    1.项目中经常会在表格中插入按钮列,图片列,表格列一些非文本的特殊列.如何在devexpress表格控件gridcontrol中实现呢?以下列举一个实现添加图片列,按钮列,时间列,按钮列,开关列的示例 ...

随机推荐

  1. 如何选择梯度下降法中的学习速率α(Gradient Descent Learning Rate Alpha)

    梯度下降算法的任务是寻找参数θ,使之能够最小化损失函数. 那么梯度下降法中的学习速率α应该如何选择呢?通常我们画出损失函数随迭代次数增加而变化的曲线. 可能会得到如下的一条曲线,x轴表示迭代次数,y轴 ...

  2. 利用Synplify Pro 加时钟约束的问题

    可以改名称为"design.ucf"加成新约束. 在使用Xilinx ISE进行综合时,可以与Synplify Pro软件配合,实现较高的综合性能.但是,有时会出现如下问题: “E ...

  3. D2. Remove the Substring (hard version)(思维 )

    D2. Remove the Substring (hard version) time limit per test 2 seconds memory limit per test 256 mega ...

  4. 小程序wepy购物车的逻辑

    <!-- 剩余可销售商品数量 大于 0,且购买未达上限--> <view wx:if="{{(detaildata.boughtNum < detaildata.bu ...

  5. Bootstrap selectpicker 下拉框多选获取选中value和多选获取文本值

    1.页面代码: 页面引入: bootstrap-select.min.css和 bootstrap-select.min.js. defaults-zh_CN.min.js文件,并初始化下拉选项框. ...

  6. 3、vueJs基础知识03

    vue过渡(动画) 本质走的css3: transtion ,animation <div id="div1" v-show="bSign" transi ...

  7. ubuntu之路——day10.3 train/dev/test的划分、大小和指标更新

     train/dev/test的划分 我们在前面的博文中已经提到了train/dev/test的相关做法.比如不能将dev和test混为一谈.同时要保证数据集的同分布等. 现在在train/dev/t ...

  8. ubuntu之路——day4(今天主要看了神经网络的概念)

    感谢两位老师做的免费公开课: 第一个是由吴恩达老师放在网易云课堂的神经网络和深度学习,比较偏理论,使用numpy包深入浅出的介绍了向量版神经网络的处理方式,当然由于视频有点老,虽然理论很好但是工具有点 ...

  9. [转] Filezilla server设置指南及中文乱码、登录欢迎语问题解决

    一.filezilla server 安装指南:FileZilla是一款免费而且开源的FTP工具.包括FileZilla Client,FileZilla Server两个版本.FileZilla S ...

  10. 【转】npm 安装express npm ERR! code UNABLE_TO_VERIFY_LEAF_SIGNATURE

    npm  安装 express  出现 npm ERR! code UNABLE_TO_VERIFY_LEAF_SIGNATUREnpm ERR! errno UNABLE_TO_VERIFY_LEA ...