BST | 1064 完全二叉搜索树
OJ:https://www.patest.cn/contests/pat-a-practise/1064
(一)23分(3个case未过)代码
建树的规律是我瞎猜的。首先用样例数据分析。
对数据排序后:
0 1 2 3 4 5 6 7 8 9
有10个数据,因为是完全二叉树,底层应该有3个叶子,上层有1+2+4=7个结点。用以下代码计算:
int up_num=,t=;
while(up_num + t* < n){
t*=;
up_num+=t;
}
int leaves_num=n-up_num;
0 1 2 | 3 4 5 6 7 8 9
将左侧叶子结点分割开,对右侧结点进行分析。
6就是根结点。计算方式是取中间。这个算法中所有的“取中间”都满足以下规律:
奇数个数:直接取中间
偶数个数:取中间靠右
定义以下函数计算:
int get_mid(int a,int b){
if((a+b)%){
return (a+b)/+;
}
return (a+b)/;
}
6就是从3到9取中间而来。之后就可以递归建树了。
6的左叶子是0到5取中间的3。
6的右叶子是7到9取中间的8。
……
23分代码:
#include <stdio.h>
#include <memory.h>
#include <math.h>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#include <algorithm>
#include <map> #define I scanf
#define OL puts
#define O printf
#define F(a,b,c) for(a=b;a<c;a++)
#define FF(a,b) for(a=0;a<b;a++)
#define FG(a,b) for(a=b-1;a>=0;a--)
#define LEN 1010
#define MAX (1<<30)-1
#define V vector<int> using namespace std; int a[LEN];
int n; typedef struct Node{
int d;
struct Node* l=NULL;
struct Node* r=NULL;
Node(int d=):d(d){
}
}; int get_mid(int a,int b){
if((a+b)%){
return (a+b)/+;
}
return (a+b)/;
} Node * build_tree(int s,int e) {
if(e<s) return NULL;
if(e==s) return new Node(a[s]);
int t=get_mid(s,e);
Node *node=new Node(a[t]);
node->l=build_tree(s,t-);
node->r=build_tree(t+,e);
return node;
} int main(){
// freopen("1064.txt","r",stdin);
I("%d",&n);
int i;
FF(i,n) I("%d",&a[i]);
sort(a,a+n);
int up_num=,t=;
while(up_num + t* < n){
t*=;
up_num+=t;
}
int leaves_num=n-up_num;
int root_i=get_mid(leaves_num,n-);
Node *root=new Node(a[root_i]);
root->l=build_tree(,root_i-);
root->r=build_tree(root_i+,n-);
queue<Node*> q;
q.push(root);
int cnt=;
while(!q.empty()){
Node* tmp=q.front();
q.pop();
cnt++;
O("%d",tmp->d);
if(cnt<n)
O(" ");
if(tmp->l)
q.push(tmp->l);
if(tmp->r)
q.push(tmp->r);
}
return ;
}
看了大佬的博客之后,才知道自己是多么naive。这题其实很简单,利用BST的性质:中序遍历的序列递增有序,再用dfs(其实深搜的本质就是中序遍历)和一个二叉堆来递归建树。最后都不用队列来模拟层序,直接把二叉堆依次输出就可以了。
AC代码:
#include <stdio.h>
#include <memory.h>
#include <math.h>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#include <algorithm>
#include <map> #define I scanf
#define OL puts
#define O printf
#define F(a,b,c) for(a=b;a<c;a++)
#define FF(a,b) for(a=0;a<b;a++)
#define FG(a,b) for(a=b-1;a>=0;a--)
#define LEN 10010
#define MAX 0x06FFFFFF
#define V vector<int> using namespace std; int n;
int a[LEN] ,ans[LEN];
int p=-; //p是中序遍历序列的索引,初始化为-1,因为在操作中首先会被+1而变成0 void dfs(int x){ //x是二叉堆(完全二叉树)的索引,根节点是0,叶子节点满足二倍关系
if(x>=n){ //超出界限
p++; //进行了一轮超出界限的操作,意味着操作序列的更新
return; //记得退出,不然会爆栈。找到目标解或者到了递归边界而退出是dfs的必须操作
}
dfs(x*+); //左子树递归
ans[x]=a[p]; //ans数组就是二叉堆,a是中序遍历序列。
dfs(x*+); //右子树递归
} int main(){
// freopen("D:\\input\\A1064.txt","r",stdin);
I("%d",&n);
int i;
FF(i,n) I("%d",&a[i]);
sort(a,a+n);
dfs();
FF(i,n){
O("%d",ans[i]);
if(i!=n-) O(" ");
}
return ;
}
BST | 1064 完全二叉搜索树的更多相关文章
- [leetcode]333. Largest BST Subtree最大二叉搜索树子树
Given a binary tree, find the largest subtree which is a Binary Search Tree (BST), where largest mea ...
- 二叉搜索树(BST)详解
前言:平衡树的前置知识吧 二叉搜索树的定义: 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于或等于它的根节点的值: (2)若右子树不空,则右子 ...
- BST(二叉搜索树)的基本操作
BST(二叉搜索树) 首先,我们定义树的数据结构如下: public class TreeNode { int val; TreeNode left; TreeNode right; public T ...
- [Swift]LeetCode235. 二叉搜索树的最近公共祖先 | Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- 二叉搜索树-php实现 插入删除查找等操作
二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...
- [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化
Serialization is the process of converting a data structure or object into a sequence of bits so tha ...
- 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)
数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...
- bst 二叉搜索树简单实现
//数组实现二叉树: // 1.下标为零的元素为根节点,没有父节点 // 2.节点i的左儿子是2*i+1:右儿子2*i+2:父节点(i-1)/2: // 3.下标i为奇数则该节点有有兄弟,否则又左兄弟 ...
- 在二叉搜索树(BST)中查找第K个大的结点之非递归实现
一个被广泛使用的面试题: 给定一个二叉搜索树,请找出其中的第K个大的结点. PS:我第一次在面试的时候被问到这个问题而且让我直接在白纸上写的时候,直接蒙圈了,因为没有刷题准备,所以就会有伤害.(面完的 ...
随机推荐
- minikube配置CRI-O作为runtime并指定flannel插件
使用crio作为runtime后,容器的启动将不依赖docker相关的组件,容器进程更加简洁.如下使用crio作为runtime启动一个nginx的进程信息如下:根进程(1)->conmon-& ...
- 记一次ssh.exec_command(cmd)执行后读取结果为空
# 连接跳板机,执行插标签 def con_tmp_machine(mobile_phoneno, myguid): keyfile = os.path.expanduser('/Users/kusy ...
- C++分治策略实现二分搜索
问题描述: 给定已排好序的n个元素组成的数组,现要利用二分搜索算法判断特定元素x是否在该有序数组中. 细节须知: (1)由于可能需要对分治策略实现二分搜索的算法效率进行评估,故使用大量的随机数对算法进 ...
- Base64和本地以及在线图片互转
package com.ruoyi.common.utils; import java.io.ByteArrayOutputStream; import java.io.FileInputStream ...
- Sharding-Jdbc概念与使用技巧
1. Sharding-Jdbc概念与使用技巧 此讲解版本为4.0.0-RC1,目前最新的版本 2019年5月21日发布 1.1. 绑定表 指分片规则一致的主表和子表.例如:t_order表和t_or ...
- 使用Hybris的customer coupon进行促销活动(promotion)
登录Backoffice,在Coupon菜单里创建一个新的类型为Customer Coupon的优惠券: 在菜单Marketing->Promotion Rules里,创建一条新的促销规则Pro ...
- 如何用StatSVN统计SVN服务器某项目的代码量
startsvn下载地址: https://sourceforge.net/projects/statsvn/?source=typ_redirect svn下载地址: https://www.vis ...
- Java常用关键字的原理及用法
转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10843135.html 一:transient 用途:Java中一个类在定义时如果实现了Serilizabl ...
- Linux进程管理之top
关于Linux进程查看,前面讲解了ps命令,下面拉介绍另一个命令top ps:静态查看 top:动态查看 动态查看进程的状态 # top [root@wei ~]# top top - 18:38:4 ...
- 工作必备之正则匹配、grep、sed、awk
常用正则:匹配空行:^\s*\n 匹配www开头:^www 添加行号:awk '$0=""NR". "$0' /etc/yum.conf 1.所有域名前加www ...