OJ:https://www.patest.cn/contests/pat-a-practise/1064

(一)23分(3个case未过)代码

建树的规律是我瞎猜的。首先用样例数据分析。

         

对数据排序后:

0 1 2 3 4 5 6 7 8 9

有10个数据,因为是完全二叉树,底层应该有3个叶子,上层有1+2+4=7个结点。用以下代码计算:

    int up_num=,t=;
while(up_num + t* < n){
t*=;
up_num+=t;
}
int leaves_num=n-up_num;

0 1 2  |  3 4 5 6 7 8 9

将左侧叶子结点分割开,对右侧结点进行分析。

6就是根结点。计算方式是取中间。这个算法中所有的“取中间”都满足以下规律:

奇数个数:直接取中间

偶数个数:取中间靠右

定义以下函数计算:

int get_mid(int a,int b){
if((a+b)%){
return (a+b)/+;
}
return (a+b)/;
}

6就是从3到9取中间而来。之后就可以递归建树了。

6的左叶子是0到5取中间的3。

6的右叶子是7到9取中间的8。

……

23分代码:

#include <stdio.h>
#include <memory.h>
#include <math.h>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#include <algorithm>
#include <map> #define I scanf
#define OL puts
#define O printf
#define F(a,b,c) for(a=b;a<c;a++)
#define FF(a,b) for(a=0;a<b;a++)
#define FG(a,b) for(a=b-1;a>=0;a--)
#define LEN 1010
#define MAX (1<<30)-1
#define V vector<int> using namespace std; int a[LEN];
int n; typedef struct Node{
int d;
struct Node* l=NULL;
struct Node* r=NULL;
Node(int d=):d(d){
}
}; int get_mid(int a,int b){
if((a+b)%){
return (a+b)/+;
}
return (a+b)/;
} Node * build_tree(int s,int e) {
if(e<s) return NULL;
if(e==s) return new Node(a[s]);
int t=get_mid(s,e);
Node *node=new Node(a[t]);
node->l=build_tree(s,t-);
node->r=build_tree(t+,e);
return node;
} int main(){
// freopen("1064.txt","r",stdin);
I("%d",&n);
int i;
FF(i,n) I("%d",&a[i]);
sort(a,a+n);
int up_num=,t=;
while(up_num + t* < n){
t*=;
up_num+=t;
}
int leaves_num=n-up_num;
int root_i=get_mid(leaves_num,n-);
Node *root=new Node(a[root_i]);
root->l=build_tree(,root_i-);
root->r=build_tree(root_i+,n-);
queue<Node*> q;
q.push(root);
int cnt=;
while(!q.empty()){
Node* tmp=q.front();
q.pop();
cnt++;
O("%d",tmp->d);
if(cnt<n)
O(" ");
if(tmp->l)
q.push(tmp->l);
if(tmp->r)
q.push(tmp->r);
}
return ;
}

看了大佬的博客之后,才知道自己是多么naive。这题其实很简单,利用BST的性质:中序遍历的序列递增有序,再用dfs(其实深搜的本质就是中序遍历)和一个二叉堆来递归建树。最后都不用队列来模拟层序,直接把二叉堆依次输出就可以了。

AC代码:

#include <stdio.h>
#include <memory.h>
#include <math.h>
#include <string>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#include <algorithm>
#include <map> #define I scanf
#define OL puts
#define O printf
#define F(a,b,c) for(a=b;a<c;a++)
#define FF(a,b) for(a=0;a<b;a++)
#define FG(a,b) for(a=b-1;a>=0;a--)
#define LEN 10010
#define MAX 0x06FFFFFF
#define V vector<int> using namespace std; int n;
int a[LEN] ,ans[LEN];
int p=-; //p是中序遍历序列的索引,初始化为-1,因为在操作中首先会被+1而变成0 void dfs(int x){ //x是二叉堆(完全二叉树)的索引,根节点是0,叶子节点满足二倍关系
if(x>=n){ //超出界限
p++; //进行了一轮超出界限的操作,意味着操作序列的更新
return; //记得退出,不然会爆栈。找到目标解或者到了递归边界而退出是dfs的必须操作
}
dfs(x*+); //左子树递归
ans[x]=a[p]; //ans数组就是二叉堆,a是中序遍历序列。
dfs(x*+); //右子树递归
} int main(){
// freopen("D:\\input\\A1064.txt","r",stdin);
I("%d",&n);
int i;
FF(i,n) I("%d",&a[i]);
sort(a,a+n);
dfs();
FF(i,n){
O("%d",ans[i]);
if(i!=n-) O(" ");
}
return ;
}

BST | 1064 完全二叉搜索树的更多相关文章

  1. [leetcode]333. Largest BST Subtree最大二叉搜索树子树

    Given a binary tree, find the largest subtree which is a Binary Search Tree (BST), where largest mea ...

  2. 二叉搜索树(BST)详解

    前言:平衡树的前置知识吧 二叉搜索树的定义: 二叉搜索树或者是一棵空树,或者是具有下列性质的二叉树: (1)若左子树不空,则左子树上所有结点的值均小于或等于它的根节点的值: (2)若右子树不空,则右子 ...

  3. BST(二叉搜索树)的基本操作

    BST(二叉搜索树) 首先,我们定义树的数据结构如下: public class TreeNode { int val; TreeNode left; TreeNode right; public T ...

  4. [Swift]LeetCode235. 二叉搜索树的最近公共祖先 | Lowest Common Ancestor of a Binary Search Tree

    Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...

  5. 二叉搜索树-php实现 插入删除查找等操作

    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它的 ...

  6. [LeetCode] Serialize and Deserialize BST 二叉搜索树的序列化和去序列化

    Serialization is the process of converting a data structure or object into a sequence of bits so tha ...

  7. 数据结构中很常见的各种树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

    数据结构中常见的树(BST二叉搜索树.AVL平衡二叉树.RBT红黑树.B-树.B+树.B*树) 二叉排序树.平衡树.红黑树 红黑树----第四篇:一步一图一代码,一定要让你真正彻底明白红黑树 --- ...

  8. bst 二叉搜索树简单实现

    //数组实现二叉树: // 1.下标为零的元素为根节点,没有父节点 // 2.节点i的左儿子是2*i+1:右儿子2*i+2:父节点(i-1)/2: // 3.下标i为奇数则该节点有有兄弟,否则又左兄弟 ...

  9. 在二叉搜索树(BST)中查找第K个大的结点之非递归实现

    一个被广泛使用的面试题: 给定一个二叉搜索树,请找出其中的第K个大的结点. PS:我第一次在面试的时候被问到这个问题而且让我直接在白纸上写的时候,直接蒙圈了,因为没有刷题准备,所以就会有伤害.(面完的 ...

随机推荐

  1. 使用Docker构建Jekyll框架网站

    使用Docker构建Jekyll框架网站 使用dockerfile构建apache + jekyll 目录 Jekyll基础镜像 构建Jekyll基础镜像 Apache镜像 构建Jekyll Apac ...

  2. Salesforce学习之路(二)Profile

    如上篇文章所述,针对User来讲,最重要的概念便是Profile和Role,因为Profile于Security息息相关,这是一个合格的产品中十分重要的一环. 何为Profile? 前文所讲--就是一 ...

  3. POJ 1061 青蛙的约会 题解

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 139755   Accepted: 31803 Descript ...

  4. 【More Effective C++ 条款2】最好使用C++转型操作符

    C的转型方式存在以下两个缺点: 1)几乎允许你将任何类型转化为任何类型,不能精确的指明转型意图,这样很不安全 如将一个pointer-to-base-class-object转型为一个pointer- ...

  5. 第九节:EF Core各种迁移指令(CodeFirst和DBFirst)

    一. CodeFirst模式指令 1.前提: 必须的程序集: Microsoft.EntityFrameworkCore.Tools Microsoft.EntityFrameworkCore.Des ...

  6. VS2019无法安装Android SDK 28的问题

    在一台新电脑上安装VS2019,新建Xamarin.Android项目,反复提示要安装Android SDK Build Tools 28.0.3,在弹出的窗口里点击接受协议,却无法安装SDK. 直接 ...

  7. CTS,CLS,CLR解释

    问题阐述 CTS.CLS和 CLR分别是什么意思? 专家解答 CTS.CLS和 CLR是.NET框架的 3个核心部分,下面分别对它们进行介绍. (1)CTS CTS即通用类型系统,它定义了如何在.NE ...

  8. C# 与 Java 的一些差异

    如果你是 Java 开发人员,则可以在 Xamarin 平台上充分利用你的技能和现有代码,同时获得 C# 的代码重用优势.你会发现 C# 语法与 Java 语法非常相似,这两种语言提供非常类似的功能. ...

  9. P2704 [NOI2001]炮兵阵地 (状压DP)

    题目: P2704 [NOI2001]炮兵阵地 解析: 和互不侵犯一样 就是多了一格 用\(f[i][j][k]\)表示第i行,上一行状态为\(j\),上上行状态为\(k\)的最多的可以放的炮兵 发现 ...

  10. JS树结构转list结构

    树转list /** * 树转list */ function treeToList(tree){ for(var i in tree){ var node = tree[i]; list = []; ...