Description

给出两个数 \(a,~b\) 求出 \([a~,b]\) 中各位数字之和能整除原数的数的个数。

Limitations

\(1 \leq a,~b \leq 10^{18}\)

Solution

考虑数位DP。

设数字 \(A = \sum_{i = 0}^k a_i \times 10^i\),其数字和 \(B = \sum_{i = 0}^k a_i\)

那么 \(A\) 满足条件即为 \(A \equiv 0 \pmod B\),根据同余的性质,可以将求和符号拆开:

\[\sum_{i = 0}^k (a_i \times 10^i \bmod B)~\equiv~0\pmod B
\]

考虑 \(B\) 事实上很小,在 \(18\) 位数字都是 \(9\) 的时候也不超过 \(200\),因此可以枚举 \(B\)。

设 \(f_{i, j, k}\) 位考虑前 \(i\) 位,前 \(i\) 位对应模 \(B\) 的值为 \(j\),且后面几位的数字和为 \(k\),不顶上界的方案数,转移时枚举当前这一位是几即可。

Code

// luogu-judger-enable-o2
#include <cstdio>
#include <cstring> const int maxn = 70;
const int maxm = 163;
const int maxt = 10; int A[maxn], B[maxn];
ll frog[maxn][maxm][maxm]; int ReadNum(int *p);
ll calc(const int *const num, const int n); int main() {
freopen("1.in", "r", stdin);
int x = ReadNum(A), y = ReadNum(B);
ll _sum = 0, _val = 0, _ten = 1;
for (int i = x - 1; ~i; --i) {
_sum += A[i]; _val += A[i] * _ten;
_ten *= 10;
}
qw(calc(B, y) - calc(A, x) + (!(_val % _sum)), '\n', true);
return 0;
} int ReadNum(int *p) {
auto beg = p;
do *p = IPT::GetChar() - '0'; while ((*p < 0) || (*p > 9));
do *(++p) = IPT::GetChar() - '0'; while ((*p <= 9) && (*p >= 0));
return p - beg;
} ll calc(const int *const num, const int n) {
int dn = n - 1;
if (n <= 1) { return num[0]; }
ll _ret = 0, _ten = 1;
for (int i = 1; i < n; ++i) _ten *= 10;
for (int p = 1; p < maxm; ++p) {
memset(frog, 0, sizeof frog);
ll ten = _ten; int tm = ten % p;
int upc = num[0] * tm % p, left = p - num[0];
for (int i = 1; i < num[0]; ++i) if (p >= i) {
frog[0][i * tm % p][p - i] = 1;
}
for (int i = 1; i < n; ++i) {
int di = i - 1;
tm = (ten /= 10) % p;
for (int j = 0; j < p; ++j) {
for (int k = 0; k < p; ++k) {
for (int h = 0; h < 10; ++h) if ((h + k) <= p) {
int dh = h * tm % p, dj = j >= dh ? j - dh : j - dh + p;
frog[i][j][k] += frog[di][dj][k + h];
}
}
}
for (int j = 1; j < 10; ++j) if (j <= p) {
++frog[i][j * tm % p][p - j];
}
for (int h = 0; h < num[i]; ++h) if (h <= left) {
int dh = h * tm % p;
++frog[i][(upc + dh) % p][left - h];
}
upc = (upc + num[i] * tm) % p; left -= num[i];
}
_ret += frog[dn][0][0];
if ((upc == 0) && (left == 0)) ++_ret;
}
return _ret;
}

Summary

逐字符读入 \(L\) 时,\(L - 1\) 并不方便处理,不如改成 \([1, R] - [1,L] + (L\)是否合法\()\)。

【数位DP】【P4127】[AHOI2009]同类分布的更多相关文章

  1. 洛谷 P4127 [AHOI2009]同类分布 解题报告

    P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...

  2. P4127 [AHOI2009]同类分布

    P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP  DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下  yuan%sum==0 不就好啦??? ...

  3. 洛谷 P4127 [AHOI2009]同类分布

    题意简述 求l~r之间各位数字之和能整除原数的数的个数. 题解思路 数位DP 代码 #include <cstdio> #include <cstring> typedef l ...

  4. 【BZOJ1799】[AHOI2009]同类分布(动态规划)

    [BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...

  5. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  6. [luogu4127 AHOI2009] 同类分布 (数位dp)

    传送门 Solution 裸数位dp,空间存不下只能枚举数字具体是什么 注意memset最好为-1,不要是0,有很多状态答案为0 Code //By Menteur_Hxy #include < ...

  7. 【[AHOI2009]同类分布】

    这是一篇有些赖皮的题解 (如果不赖皮的话,bzoj上也是能卡过去的) 首先由于我这个非常\(sb\)的方法复杂度高达\(O(171^4)\),所以面对极限的\(1e18\)的数据实在是卡死了 但是这个 ...

  8. [AHOI2009]同类分布

    题目大意: 问在区间[l,r]内的正整数中,有多少数能被其个位数字之和整除. 思路: 数位DP. 极端情况下,每一位都是9,所以各位数字之和不超过9*18.(为了方便这里用了9*19) f[i][j] ...

  9. 【题解】AHOI2009同类分布

    好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ" 实际上这题只要顺藤摸瓜就可以了.首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数:2. ...

随机推荐

  1. Spring69道面试题

    Spring 概述 1. 什么是spring? Spring 是个java企业级应用的开源开发框架.Spring主要用来开发Java应用,但是有些扩展是针对构建J2EE平台的web应用.Spring  ...

  2. linux内核树的建立(Ubuntu)

    博客地址:http://www.cnblogs.com/zengjianrong/p/3178874.html 1.搜索源码 2.下载源码,下载路径可设为:/usr/src/ 3.解压源码 4.进入源 ...

  3. 算法设计与分析(李春保)练习题答案v2

    ----------------------------------------------------- Page 1 --------------------------------------- ...

  4. Neo4j图数据库从入门到精通(转)

    add by zhj: 转载时,目录没整理好,还会跳转到原文 其实RDB也可以存储多对多的关系,使用的是中间表,GDB使用的是边,RDB中的实体存储在数据表,而GDB存储在节点.两者使用的底层技术不同 ...

  5. 【BZOJ4833】最小公倍佩尔数(min-max容斥)

    [BZOJ4833]最小公倍佩尔数(min-max容斥) 题面 BZOJ 题解 首先考虑怎么求\(f(n)\),考虑递推这个东西 \((1+\sqrt 2)(e(n-1)+f(n-1)\sqrt 2) ...

  6. 聊聊Lambda架构

    定义 在数据分析场景中,我们可能会遇到这样的问题.例如,我们要做一个推荐系统,如果我们用批处理任务去做,一天或者一小时的推荐频次明显延迟太大.如果用流处理任务,虽然延迟的问题解决了,然而只用实时数据而 ...

  7. .net core启用Swagger

    启用 Swagger 页面    官方文档推荐两种框架:Swashbuckle 和 NSwag,这里使用 Swashbuckle 来生成接口文档. 目录 安装包 添加服务 配置中间件 添加 UI 设置 ...

  8. SpringIOC源码解析(上)

    注意,看完这篇文章需要很长很长很长时间... 准备工作 本文会分析Spring的IOC模块的整体流程,分析过程需要使用一个简单的demo工程来启动Spring,demo工程我以备好,需要的童鞋自行在下 ...

  9. MYSQL中IN,INSTR,FIND_IN_SET函数效率比较(转)

    今天写代码时前台传过来类似‘1,2,3,4,5,6’的字符串,这种情况直接用IN是无效的,需要把字符串分割成数组或者组装成列表,然后再利用mabatis的foreach函数 <select id ...

  10. FCC-学习笔记 Pig Latin

    FCC-学习笔记  Pig Latin 1>最近在学习和练习FCC的题目.这个真的比较的好,推荐给大家. 2>中文版的地址:https://www.freecodecamp.cn/;英文版 ...