(转载) AutoML 与轻量模型大列表
作者:guan-yuan
项目地址:awesome-AutoML-and-Lightweight-Models
博客地址:http://www.lib4dev.in/info/guan-yuan/awesome-AutoML-and-Lightweight-Models/163359611
awesome-AutoML-and-Lightweight-Models
A list of high-quality (newest) AutoML works and lightweight models including 1.) Neural Architecture Search, 2.) Lightweight Structures, 3.) Model Compression & Acceleration, 4.) Hyperparameter Optimization, 5.) Automated Feature Engineering.
This repo is aimed to provide the info for AutoML research (especially for the lightweight models). Welcome to PR the works (papers, repositories) that are missed by the repo.
1.) Neural Architecture Search
[Papers]
Gradient:
Searching for A Robust Neural Architecture in Four GPU Hours | [CVPR 2019]
- D-X-Y/GDAS | [Pytorch]
ASAP: Architecture Search, Anneal and Prune | [2019/04]
Single-Path NAS: Designing Hardware-Efficient ConvNets in less than 4 Hours | [2019/04]
- dstamoulis/single-path-nas | [Tensorflow]
Automatic Convolutional Neural Architecture Search for Image Classification Under Different Scenes | [IEEE Access 2019]
sharpDARTS: Faster and More Accurate Differentiable Architecture Search | [2019/03]
Learning Implicitly Recurrent CNNs Through Parameter Sharing | [ICLR 2019]
- lolemacs/soft-sharing | [Pytorch]
Probabilistic Neural Architecture Search | [2019/02]
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation | [2019/01]
SNAS: Stochastic Neural Architecture Search | [ICLR 2019]
FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable Neural Architecture Search | [2018/12]
Neural Architecture Optimization | [NIPS 2018]
- renqianluo/NAO | [Tensorflow]
DARTS: Differentiable Architecture Search | [2018/06]
- quark0/darts | [Pytorch]
- khanrc/pt.darts | [Pytorch]
- dragen1860/DARTS-PyTorch | [Pytorch]
Reinforcement Learning:
Template-Based Automatic Search of Compact Semantic Segmentation Architectures | [2019/04]
Understanding Neural Architecture Search Techniques | [2019/03]
Fast, Accurate and Lightweight Super-Resolution with Neural Architecture Search | [2019/01]
- falsr/FALSR | [Tensorflow]
Multi-Objective Reinforced Evolution in Mobile Neural Architecture Search | [2019/01]
- moremnas/MoreMNAS | [Tensorflow]
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware | [ICLR 2019]
- MIT-HAN-LAB/ProxylessNAS | [Pytorch, Tensorflow]
Transfer Learning with Neural AutoML | [NIPS 2018]
Learning Transferable Architectures for Scalable Image Recognition | [2018/07]
- wandering007/nasnet-pytorch | [Pytorch]
- tensorflow/models/research/slim/nets/nasnet | [Tensorflow]
MnasNet: Platform-Aware Neural Architecture Search for Mobile | [2018/07]
- AnjieZheng/MnasNet-PyTorch | [Pytorch]
Practical Block-wise Neural Network Architecture Generation | [CVPR 2018]
Efficient Neural Architecture Search via Parameter Sharing | [ICML 2018]
- melodyguan/enas | [Tensorflow]
- carpedm20/ENAS-pytorch | [Pytorch]
Efficient Architecture Search by Network Transformation | [AAAI 2018]
Evolutionary Algorithm:
Single Path One-Shot Neural Architecture Search with Uniform Sampling | [2019/04]
DetNAS: Neural Architecture Search on Object Detection | [2019/03]
The Evolved Transformer | [2019/01]
Designing neural networks through neuroevolution | [Nature Machine Intelligence 2019]
EAT-NAS: Elastic Architecture Transfer for Accelerating Large-scale Neural Architecture Search | [2019/01]
Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution | [ICLR 2019]
SMBO:
MFAS: Multimodal Fusion Architecture Search | [CVPR 2019]
DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures | [ECCV 2018]
Progressive Neural Architecture Search | [ECCV 2018]
- titu1994/progressive-neural-architecture-search | [Keras, Tensorflow]
- chenxi116/PNASNet.pytorch | [Pytorch]
Random Search:
Exploring Randomly Wired Neural Networks for Image Recognition | [2019/04]
Searching for Efficient Multi-Scale Architectures for Dense Image Prediction | [NIPS 2018]
Hypernetwork:
- Graph HyperNetworks for Neural Architecture Search | [ICLR 2019]
Bayesian Optimization:
Partial Order Pruning
- Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search | [CVPR 2019]
- lixincn2015/Partial-Order-Pruning | [Caffe]
Knowledge Distillation
[Projects]
- Microsoft/nni | [Python]
2.) Lightweight Structures
[Papers]
Backbone:
- Searching for MobileNetV3 | [2019/05]
- kuan-wang/pytorch-mobilenet-v3 | [Pytorch]
- leaderj1001/MobileNetV3-Pytorch | [Pytorch]
Segmentation:
CGNet: A Light-weight Context Guided Network for Semantic Segmentation | [2019/04]
- wutianyiRosun/CGNet | [Pytorch]
ESPNetv2: A Light-weight, Power Efficient, and General Purpose Convolutional Neural Network | [2018/11]
- sacmehta/ESPNetv2 | [Pytorch]
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation | [ECCV 2018]
- sacmehta/ESPNet | [Pytorch]
BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation | [ECCV 2018]
- ooooverflow/BiSeNet | [Pytorch]
- ycszen/TorchSeg | [Pytorch]
ERFNet: Efficient Residual Factorized ConvNet for Real-time Semantic Segmentation | [T-ITS 2017]
- Eromera/erfnet_pytorch | [Pytorch]
Object Detection:
ThunderNet: Towards Real-time Generic Object Detection | [2019/03]
Pooling Pyramid Network for Object Detection | [2018/09]
- tensorflow/models | [Tensorflow]
Tiny-DSOD: Lightweight Object Detection for Resource-Restricted Usages | [BMVC 2018]
- lyxok1/Tiny-DSOD | [Caffe]
Pelee: A Real-Time Object Detection System on Mobile Devices | [NeurIPS 2018]
- Robert-JunWang/Pelee | [Caffe]
- Robert-JunWang/PeleeNet | [Pytorch]
Receptive Field Block Net for Accurate and Fast Object Detection | [ECCV 2018]
- ruinmessi/RFBNet | [Pytorch]
- ShuangXieIrene/ssds.pytorch | [Pytorch]
- lzx1413/PytorchSSD | [Pytorch]
FSSD: Feature Fusion Single Shot Multibox Detector | [2017/12]
- ShuangXieIrene/ssds.pytorch | [Pytorch]
- lzx1413/PytorchSSD | [Pytorch]
- dlyldxwl/fssd.pytorch | [Pytorch]
Feature Pyramid Networks for Object Detection | [CVPR 2017]
- tensorflow/models | [Tensorflow]
3.) Model Compression & Acceleration
[Papers]
Compression:
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks | [ICLR 2019]
- google-research/lottery-ticket-hypothesis | [Tensorflow]
Rethinking the Value of Network Pruning | [ICLR 2019]
Slimmable Neural Networks | [ICLR 2019]
- JiahuiYu/slimmable_networks | [Pytorch]
AMC: AutoML for Model Compression and Acceleration on Mobile Devices | [ECCV 2018]
Learning Efficient Convolutional Networks through Network Slimming | [ICCV 2017]
- foolwood/pytorch-slimming | [Pytorch]
Channel Pruning for Accelerating Very Deep Neural Networks | [ICCV 2017]
- yihui-he/channel-pruning | [Caffe]
Pruning Convolutional Neural Networks for Resource Efficient Inference | [ICLR 2017]
- jacobgil/pytorch-pruning | [Pytorch]
Pruning Filters for Efficient ConvNets | [ICLR 2017]
Acceleration:
- Fast Algorithms for Convolutional Neural Networks | [CVPR 2016]
- andravin/wincnn | [Python]
[Projects]
- NervanaSystems/distiller | [Pytorch]
- Tencent/PocketFlow | [Tensorflow]
[Tutorials/Blogs]
4.) Hyperparameter Optimization
[Papers]
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly | [2019/03]
Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features | [NeurIPS 2018]
Google vizier: A service for black-box optimization | [SIGKDD 2017]
[Projects]
- BoTorch | [PyTorch]
- Ax (Adaptive Experimentation Platform) | [PyTorch]
- Microsoft/nni | [Python]
- dragonfly/dragonfly | [Python]
[Tutorials/Blogs]
Hyperparameter tuning in Cloud Machine Learning Engine using Bayesian Optimization
-
- krasserm/bayesian-machine-learning | [Python]
5.) Automated Feature Engineering
Model Analyzer
Netscope CNN Analyzer | [Caffe]
sksq96/pytorch-summary | [Pytorch]
Lyken17/pytorch-OpCounter | [Pytorch]
sovrasov/flops-counter.pytorch | [Pytorch]
References
- LITERATURE ON NEURAL ARCHITECTURE SEARCH
- handong1587/handong1587.github.io
- hibayesian/awesome-automl-papers
- mrgloom/awesome-semantic-segmentation
- amusi/awesome-object-detection
(转载) AutoML 与轻量模型大列表的更多相关文章
- (转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models
Awesome-AutoML-and-Lightweight-Models 原文:http://bbs.cvmart.net/articles/414/zi-yuan-automl-yu-qing-l ...
- Vue.js:轻量高效的前端组件化方案(转载)
摘要:Vue.js通过简洁的API提供高效的数据绑定和灵活的组件系统.在前端纷繁复杂的生态中,Vue.js有幸受到一定程度的关注,目前在GitHub上已经有5000+的star.本文将从各方面对Vue ...
- 【转载】阿里云轻量应用型服务器和ECS服务器比较
在采购阿里云服务器的时候,我们会发现阿里云服务器分好多种,如GPU服务器.ECS服务器.轻量应用型服务器等.ECS服务器和轻量应用型服务器很多人无法搞明白其中的差别,个人的观点是轻量应用型服务器适合入 ...
- 针对数据量较大的表,需要进行跨库复制,采用navcat 实现sqlite数据库跨数据库的数据表迁移 [转载]
2014年12月13日 14:36 新浪博客 (转自http://www.cnblogs.com/nmj1986/archive/2012/09/17/2688827.html) 需求: 有两个不同的 ...
- 阿里云轻量应用服务器 配置mysql详解(转载)
1.服务器规格 1.地域选择 考虑个人地址因素因此选择了华南. 2.选择应用镜像/系统镜像 这个应该看个人需求,因为我只是想用来放数据库的,所以就随便选了个WordPress. 选好之后购买就完事了, ...
- 轻量化模型之MobileNet系列
自 2012 年 AlexNet 以来,卷积神经网络在图像分类.目标检测.语义分割等领域获得广泛应用.随着性能要求越来越高,AlexNet 已经无法满足大家的需求,于是乎各路大牛纷纷提出性能更优越的 ...
- Raspkate - 基于.NET的可运行于树莓派的轻量型Web服务器
最近在业余时间玩玩树莓派,刚开始的时候在树莓派里写一些基于wiringPi库的C语言程序来控制树莓派的GPIO引脚,从而控制LED发光二极管的闪烁,后来觉得,是不是可以使用HTML5+jQuery等流 ...
- 编写轻量ajax组件01-对比webform平台上的各种实现方式
前言 Asp.net WebForm 和 Asp.net MVC(简称MVC) 都是基于Asp.net的web开发框架,两者有很大的区别,其中一个就是MVC更加注重http本质,而WebForm试图屏 ...
- 基于netty轻量的高性能分布式RPC服务框架forest<上篇>
工作几年,用过不不少RPC框架,也算是读过一些RPC源码.之前也撸过几次RPC框架,但是不断的被自己否定,最近终于又撸了一个,希望能够不断迭代出自己喜欢的样子. 顺便也记录一下撸RPC的过程,一来作为 ...
随机推荐
- python的tkinter,能画什么图?
今天从下午忙到现在,睡觉. 这个能绘点图的. import json import tkinter as tk from tkinter import filedialog from tkinter ...
- Kotlin异常与Java异常的区别及注解详解
Kotlin异常与Java异常的区别: throw的Kotlin中是个表达式,这样我们可以将throw作为Elvis表达式[val test = aa ?: bb,这样的则为Elvis表达式,表示如果 ...
- Linux查看文件指定行数内容
1.tail date.log 输出文件末尾的内容,默认10行 tail -20 date.log 输出最后20行的内容 tail -n -20 date ...
- ARTS-week2
Algorithm 给你一个有效的 IPv4 地址 address,返回这个 IP 地址的无效化版本.所谓无效化 IP 地址,其实就是用 "[.]" 代替了每个 ".&q ...
- Echo团队Alpha冲刺 - 总结随笔
班级:软件工程1916|W 作业:项目Alpha冲刺(团队) 团队名称:Echo 作业目标:完成项目Alpha冲刺 评审表:腾讯文档 Alpha冲刺随笔集合 目录 团队博客汇总 项目预期计划及完成情况 ...
- http请求头出现provisional headers are shown
http请求头出现provisional headers are shown Provisional headers are shown provisional 详细用法>> 英 [prə ...
- CodeForces - 76A:Gift (最小生成树 解决单调性问题是思想)
题意:给定N点M边的无向连通图,每条边有两个权值(g,s). 给定G,S. 让你给出一组(g0,s0)使得图中仅留下g<=g0, s<=s0的边之后,依然连通,并求Gg0+Ss0的最小值. ...
- about云Hadoop相关技术总结
让你真正明白spark streaminghttp://www.aboutyun.com/forum.php?mod=viewthread&tid=21141(出处: about云开发)
- 当调用对象中不存的方法、属性时,__getattr__的应用场景
一.Python中创建类和实例的调用顺序 new(cls) 创建对象前调用,如果类中没定义,会一直向父类找,直到object的 new 方法创建类.cls代表类本身 init(self) 创建类实例后 ...
- Laravel —— 多模块开发
Laravel 框架比较庞大,更适用于比较大的项目. 为了整个项目文件结构清晰,不同部分分为不同模块很有必要. 一.安装扩展包 1.根据不同 Laravel 版本,选择扩展包版本. packagest ...