[LeetCode] 146. LRU Cache 近期最少使用缓存
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get
and set
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.set(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
设计一个近期最少使用页面置换缓存LRU(Least Recently Used),实现get(key), set(key, value)功能。
get(key):取值(key恒为正), 不存在时返回-1。如果存在,返回值,并且delete此key,在从新写入cache,因为要最近刚使用过,要把它放到队尾。
set(key, value):缓存已满,删除近期最久未被使用的节点,添加新节点进缓存。缓存未满,节点存在,修改value;节点不存在,添加新节点进缓存;最后更新此节点到队尾。
解法1: 双向链表(Doubly-Linked List) + HashMap
双向链表:维护缓存节点CacheNode,凡是被访问(新建/修改命中/访问命中)过的节点,一律在访问完成后移动到双向链表尾部,保证链表尾部始终为最新节点;保证链表头部始终为最旧节点,LRU策略删除时表现为删除双向链表头部;由于链表不支持随机访问,使用HashMap+双向链表实现LRU缓存,HashMap中键值对:<key, CacheNode>。
解法2: OrderedDict有序字典
Time: Get O(1) Set O(1), Space: O(N)
Java:
import java.util.HashMap; class Solution {
private HashMap<Integer, CacheNode> map;
private int capacity;
// head.next和tail.next指向链表头尾,包起来防止null
private CacheNode head = new CacheNode(-1, -1);
private CacheNode tail = new CacheNode(-1, -1); private class CacheNode {
int key, value;
CacheNode pre, next;
CacheNode(int key, int value) {
this.key = key;
this.value = value;
this.pre = null;
this.next = null;
}
} public Solution(int capacity) {
this.map = new HashMap<>();
this.capacity = capacity;
} // 将已有节点或新建节点移动到链表尾部
private void moveToTail(CacheNode target, boolean isNew) {
// 尾部节点显然不需要移动
if (target != tail.next) {
if (!isNew) {
// 修改旧节点的双向链表指针
target.pre.next = target.next;
target.next.pre = target.pre;
}
// 添加节点到链表尾部
tail.next.next = target;
target.pre = tail.next;
tail.next = target;
}
} // 命中节点添加到链表尾部,未命中返回-1
public int get(int key) {
if (map.containsKey(key)) {
CacheNode target = map.get(key);
// 将已有节点移动到链表尾部
moveToTail(target, false);
// 此时链表尾部tail.next = target,更新next指向null,防止出现环
tail.next.next = null;
return target.value;
}
return -1;
} public void set(int key, int value) {
if (map.containsKey(key)) {
CacheNode target = map.get(key);
target.value = value;
map.put(key, target);
// 将访问过的已有节点移动到链表尾部
moveToTail(target, false);
} else if(map.size() < capacity) { // cache未满,添加节点
CacheNode newNode = new CacheNode(key, value);
map.put(key, newNode);
if (head.next == null) {
head.next = newNode;
newNode.pre = head;
tail.next = newNode;
} else {
// 将新建节点移动到链表尾部
moveToTail(newNode, true);
}
} else { // cache已满,淘汰链表链表头部节点,新节点加入到链表尾部
CacheNode newNode = new CacheNode(key, value);
map.remove(head.next.key);
map.put(key, newNode);
// cache中只有一个元素
if (head.next == tail.next) {
head.next = newNode;
tail.next = newNode;
} else { // cache中不止一个元素,删除头部
head.next.next.pre = head; // 更新新头部.pre = head
head.next = head.next.next;// 更新新头部
// 将新建节点移动到链表尾部
moveToTail(newNode, true);
}
}
}
}
Python:
class Node:
def __init__(self, key, val):
self.key = key
self.val = val
self.prev = None
self.next = None class LRUCache:
# @param capacity, an integer
def __init__(self, capacity):
self.capacity = capacity
self.size = 0
self.dummyNode = Node(-1, -1)
self.tail = self.dummyNode
self.entryFinder = {} # @return an integer
def get(self, key):
entry = self.entryFinder.get(key)
if entry is None:
return -1
else:
self.renew(entry)
return entry.val # @param key, an integer
# @param value, an integer
# @return nothing
def set(self, key, value):
entry = self.entryFinder.get(key)
if entry is None:
entry = Node(key, value)
self.entryFinder[key] = entry
self.tail.next = entry
entry.prev = self.tail
self.tail = entry
if self.size < self.capacity:
self.size += 1
else:
headNode = self.dummyNode.next
if headNode is not None:
self.dummyNode.next = headNode.next
headNode.next.prev = self.dummyNode
del self.entryFinder[headNode.key]
else:
entry.val = value
self.renew(entry) def renew(self, entry):
if self.tail != entry:
prevNode = entry.prev
nextNode = entry.next
prevNode.next = nextNode
nextNode.prev = prevNode
entry.next = None
self.tail.next = entry
entry.prev = self.tail
self.tail = entry
Python:
class ListNode(object):
def __init__(self, key, val):
self.val = val
self.key = key
self.next = None
self.prev = None class LinkedList(object):
def __init__(self):
self.head = None
self.tail = None def insert(self, node):
node.next, node.prev = None, None # avoid dirty node
if self.head is None:
self.head = node
else:
self.tail.next = node
node.prev = self.tail
self.tail = node def delete(self, node):
if node.prev:
node.prev.next = node.next
else:
self.head = node.next
if node.next:
node.next.prev = node.prev
else:
self.tail = node.prev
node.next, node.prev = None, None # make node clean class LRUCache(object): def __init__(self, capacity):
self.list = LinkedList()
self.dict = {}
self.capacity = capacity def _insert(self, key, val):
node = ListNode(key, val)
self.list.insert(node)
self.dict[key] = node def get(self, key):
if key in self.dict:
val = self.dict[key].val
self.list.delete(self.dict[key])
self._insert(key, val)
return val
return -1 def set(self, key, val):
if key in self.dict:
self.list.delete(self.dict[key])
elif len(self.dict) == self.capacity:
del self.dict[self.list.head.key]
self.list.delete(self.list.head)
self._insert(key, val)
Python:
class LRUCache: def __init__(self, capacity):
self.capacity = capacity
self.cache = collections.OrderedDict() def get(self, key):
if not key in self.cache:
return -1
value = self.cache.pop(key)
self.cache[key] = value
return value def set(self, key, value):
if key in self.cache:
self.cache.pop(key)
elif len(self.cache) == self.capacity:
self.cache.popitem(last=False)
self.cache[key] = value
C++:
class LRUCache{
public:
LRUCache(int capacity) {
cap = capacity;
} int get(int key) {
auto it = m.find(key);
if (it == m.end()) return -1;
l.splice(l.begin(), l, it->second);
return it->second->second;
} void set(int key, int value) {
auto it = m.find(key);
if (it != m.end()) l.erase(it->second);
l.push_front(make_pair(key, value));
m[key] = l.begin();
if (m.size() > cap) {
int k = l.rbegin()->first;
l.pop_back();
m.erase(k);
}
} private:
int cap;
list<pair<int, int> > l;
unordered_map<int, list<pair<int, int> >::iterator> m;
};
All LeetCode Questions List 题目汇总
[LeetCode] 146. LRU Cache 近期最少使用缓存的更多相关文章
- leetcode 146. LRU Cache 、460. LFU Cache
LRU算法是首先淘汰最长时间未被使用的页面,而LFU是先淘汰一定时间内被访问次数最少的页面,如果存在使用频度相同的多个项目,则移除最近最少使用(Least Recently Used)的项目. LFU ...
- [LeetCode] 146. LRU Cache 最近最少使用页面置换缓存器
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...
- LeetCode之LRU Cache 最近最少使用算法 缓存设计
设计并实现最近最久未使用(Least Recently Used)缓存. 题目描述: Design and implement a data structure for Least Recently ...
- leetcode 146. LRU Cache ----- java
esign and implement a data structure for Least Recently Used (LRU) cache. It should support the foll ...
- Java for LeetCode 146 LRU Cache 【HARD】
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...
- leetcode@ [146] LRU Cache (TreeMap)
https://leetcode.com/problems/lru-cache/ Design and implement a data structure for Least Recently Us ...
- Leetcode#146 LRU Cache
原题地址 以前Leetcode的测试数据比较弱,单纯用链表做也能过,现在就不行了,大数据会超时.通常大家都是用map+双向链表做的. 我曾经尝试用C++的list容器来写,后来发现map没法保存lis ...
- LeetCode 146. LRU缓存机制(LRU Cache)
题目描述 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key) - 如果密钥 (k ...
- [Leetcode]146.LRU缓存机制
Leetcode难题,题目为: 运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制.它应该支持以下操作: 获取数据 get 和 写入数据 put . 获取数据 get(key ...
随机推荐
- SQL进阶系列之8EXISTS谓词的用法
写在前面 支撑SQL和关系数据库的基础理论:数学领域的集合论和逻辑学标准体系的谓词逻辑 理论篇 什么是谓词?谓词是返回值为真值(true false unknown)的函数 关系数据库里,每一个行数据 ...
- 微信小程序~下拉刷新PullDownRefresh
一.onPullDownRefresh回调 代码: // http://itlao5.com onPullDownRefresh: function () { console.log('onPul ...
- Mybatis容易遇到的问题
1.MyBatis中#和$的区别? 1.使用#的原理是?占位符,而$的原理为直接字符串拼接方式 2.$方式一般使用在写数据库中的固定字段时候才会使用例如表名或者列名(select * from use ...
- test20190905 ChiTongZ
100+22+90=212.前两道题不错,但T3 没什么意义. 围观刘老爷超强 T1 解法. ChiTongZ的水题赛 [题目简介] 我本可以容忍黑暗,如果我不曾见过太阳. 考试内容略有超纲,不超纲的 ...
- postgres高可用学习篇二:通过pgbouncer连接池工具来管理postgres连接
安装pgbouncer yum install libevent -y yum install libevent-devel -y wget http://www.pgbouncer.org/down ...
- intellij idea参数提示param hints
https://jingyan.baidu.com/article/5225f26bae80f4e6fa0908b1.html
- Python编写的ssh客户端[类似putty]
转载请注明出处:http://blog.csdn.net/jmppok/article/details/17588381 windows下可以通过putty以ssh方式连接linux主机.但putty ...
- Haskell语言学习笔记(94)Enum Bounded
Enum class Enum a where succ, pred :: a -> a toEnum :: Int -> a fromEnum :: a -> Int enumFr ...
- CF1172E Nauuo and ODT LCT
自己独立想出来的,超级开心 一开始想的是对于每一个点分别算这个点对答案的贡献. 但是呢,我们发现由于每一条路径的贡献是该路径颜色种类数,而每个颜色可能出现多次,所以这样就特别不好算贡献. 那么,还是上 ...
- WinDbg常用命令系列---显示加载的模块列表lm
lm (List Loaded Modules) lm命令显示指定的加载模块.输出包括模块的状态和路径. lmOptions [a Address] [m Pattern | M Pattern] 参 ...