[LeetCode] 675. Cut Off Trees for Golf Event 为高尔夫赛事砍树
You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-negative 2D map, in this map:
0
represents theobstacle
can't be reached.1
represents theground
can be walked through.The place with number bigger than 1
represents atree
can be walked through, and this positive number represents the tree's height.
You are asked to cut off all the trees in this forest in the order of tree's height - always cut off the tree with lowest height first. And after cutting, the original place has the tree will become a grass (value 1).
You will start from the point (0, 0) and you should output the minimum steps you need to walk to cut off all the trees. If you can't cut off all the trees, output -1 in that situation.
You are guaranteed that no two trees
have the same height and there is at least one tree needs to be cut off.
Example 1:
Input:
[
[1,2,3],
[0,0,4],
[7,6,5]
]
Output: 6
Example 2:
Input:
[
[1,2,3],
[0,0,0],
[7,6,5]
]
Output: -1
Example 3:
Input:
[
[2,3,4],
[0,0,5],
[8,7,6]
]
Output: 6
Explanation: You started from the point (0,0) and you can cut off the tree in (0,0) directly without walking.
Hint: size of the given matrix will not exceed 50x50.
为一个高尔夫赛事砍掉森林中所有高度大于1的树,要按从低到高的顺序砍。森林用一个2D的map来表示,0代表障碍物,无法通过。1代表地面,可以通过。其他整数代表是树和相应的高度,可以通过。
解法:把是树的节点,按树高从低到高排序。然后从第一棵树开始,每次都用BFS求出和下一棵树之间的最短路径,然后累计路径和为结果。如果不能走到下一棵树,则返回-1。
Python:
class Solution(object):
def cutOffTree(self, forest):
"""
:type forest: List[List[int]]
:rtype: int
"""
def dot(p1, p2):
return p1[0]*p2[0]+p1[1]*p2[1] def minStep(p1, p2):
min_steps = abs(p1[0]-p2[0])+abs(p1[1]-p2[1])
closer, detour = [p1], []
lookup = set()
while True:
if not closer: # cannot find a path in the closer expansions
if not detour: # no other possible path
return -1
# try other possible paths in detour expansions with extra 2-step cost
min_steps += 2
closer, detour = detour, closer
i, j = closer.pop()
if (i, j) == p2:
return min_steps
if (i, j) not in lookup:
lookup.add((i, j))
for I, J in (i+1, j), (i-1, j), (i, j+1), (i, j-1):
if 0 <= I < m and 0 <= J < n and forest[I][J] and (I, J) not in lookup:
is_closer = dot((I-i, J-j), (p2[0]-i, p2[1]-j)) > 0
(closer if is_closer else detour).append((I, J))
return min_steps m, n = len(forest), len(forest[0])
min_heap = []
for i in xrange(m):
for j in xrange(n):
if forest[i][j] > 1:
heapq.heappush(min_heap, (forest[i][j], (i, j))) start = (0, 0)
result = 0
while min_heap:
tree = heapq.heappop(min_heap)
step = minStep(start, tree[1])
if step < 0:
return -1
result += step
start = tree[1]
return result
C++:
class Solution {
public:
int cutOffTree(vector<vector<int>>& forest) {
int m = forest.size(), n = forest[0].size(), res = 0, row = 0, col = 0;
vector<vector<int>> trees;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (forest[i][j] > 1) trees.push_back({forest[i][j], i, j});
}
}
sort(trees.begin(), trees.end());
for (int i = 0; i < trees.size(); ++i) {
int cnt = helper(forest, row, col, trees[i][1], trees[i][2]);
if (cnt == -1) return -1;
res += cnt;
row = trees[i][1];
col = trees[i][2];
}
return res;
}
int helper(vector<vector<int>>& forest, int row, int col, int treeRow, int treeCol) {
if (row == treeRow && col == treeCol) return 0;
int m = forest.size(), n = forest[0].size(), cnt = 0;
queue<pair<int, int>> q{{{row, col}}};
vector<vector<bool>> visited(m, vector<bool>(n, false));
vector<vector<int>> dirs{{-1,0},{0,1},{1,0},{0,-1}};
while (!q.empty()) {
++cnt;
for (int i = q.size() - 1; i >= 0; --i) {
auto t = q.front(); q.pop();
for (auto dir : dirs) {
int x = t.first + dir[0], y = t.second + dir[1];
if (x < 0 || x >= m || y < 0 || y >= n || visited[x][y] || forest[x][y] == 0) continue;
if (x == treeRow && y == treeCol) return cnt;
visited[x][y] = true;
q.push({x, y});
}
}
}
return -1;
}
};
All LeetCode Questions List 题目汇总
[LeetCode] 675. Cut Off Trees for Golf Event 为高尔夫赛事砍树的更多相关文章
- [LeetCode] Cut Off Trees for Golf Event 为高尔夫赛事砍树
You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...
- LeetCode 675. Cut Off Trees for Golf Event
原题链接在这里:https://leetcode.com/problems/cut-off-trees-for-golf-event/description/ 题目: You are asked to ...
- [LeetCode] 675. Cut Off Trees for Golf Event_Hard tag: BFS
You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...
- 675. Cut Off Trees for Golf Event
// Potential improvements: // 1. we can use vector<int> { h, x, y } to replace Element, sortin ...
- LeetCode - Cut Off Trees for Golf Event
You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...
- [Swift]LeetCode675. 为高尔夫比赛砍树 | Cut Off Trees for Golf Event
You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...
- Leetcode 675.为高尔夫比赛砍树
为高尔夫比赛砍树 你被请来给一个要举办高尔夫比赛的树林砍树. 树林由一个非负的二维数组表示, 在这个数组中: 0 表示障碍,无法触碰到. 1 表示可以行走的地面. 比1大的数 表示一颗允许走过的树的高 ...
- LeetCode:Unique Binary Search Trees I II
LeetCode:Unique Binary Search Trees Given n, how many structurally unique BST's (binary search trees ...
- [LeetCode系列]卡特兰数(Catalan Number) 在求解独特二叉搜寻树(Unique Binary Search Tree)中的应用分析
本文原题: LeetCode. 给定 n, 求解独特二叉搜寻树 (binary search trees) 的个数. 什么是二叉搜寻树? 二叉查找树(Binary Search Tree),或者是一棵 ...
随机推荐
- G1垃圾收集器系统化说明【官方解读】
还是继续G1官网解读,上一次已经将这三节的东东读完了,如下: 所以接一来则继续往下读: Reviewing Generational GC and CMS[回顾一下CMS收集器] The Concur ...
- C# 模拟鼠标移动和点击
我们需要用到的mouse_event函数,位于user32.dll这个库文件里面,所以我们要先声明引用. [System.Runtime.InteropServices.DllImport(" ...
- 将照片转成base64时候,使用下面的这个包更加安全一些
import org.apache.commons.net.util.Base64; 在项目中将照片转成base64时候,使用下面的这个包更加安全一些
- Centos7-ssh免密登录
生成密钥 ssh-keygen 拷贝密钥 ssh-copy-id #目的IP或域名 检查配置 cat /root/.ssh/authorized_keys 登录测试 ssh ip
- python iter()函数迭代器
迭代器为类序列对象提供了一个类序列的接口.python的迭代无缝地支持序列对象,而且它还允许程序员迭代非序列类型,包括用户定义的对象.迭代器用起来很灵巧,你可以迭代不是序列但表现处序列行为的对象,例如 ...
- zabbix4.2.5默认告警模板
产生告警: Problem: {EVENT.NAME} Problem started at {EVENT.TIME} on {EVENT.DATE} Problem name: {EVENT.NAM ...
- stm32flash的读写特性
在使用stm32自带的flash保存数据时候,如下特点必须知道: 1.必须是先擦除一个扇区,才能写入 2.读数据没有限制 3.写数据必须是2字节,同时写入地址以一定要考虑字节对齐, 4.一般都是在最后 ...
- 常见的transformation算子
RDD:RDD分区数,若从HDFS创建RDD,RDD的分区就是和文件块一一对应,若是集合并行化形式创建,RDD分区数可以指定,一般默认值是CPU的核数. task:task数量就是和分区数量对应. 一 ...
- [CSS3] Use media query to split css files and Dark mode (prefers-color-scheme: dark)
Dark Mode: :root { --text-color: #000; --background-color: #fff; } body { color: var(--text-color); ...
- IntelliJ IDEA 查找两个字符之间任意内容正则表达式
表达式: A.*?B(“.“表示任意字符,“?”表示匹配0个或多个)