淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysql作为消息存储媒介,可完全水平扩容,为了进一步降低成本,我们认为存储部分可以进一步优化,2011年初,Linkin开源了Kafka这个优秀的消息中间件,淘宝中间件团队在对Kafka做过充分Review之后,Kafka无限消息堆积,高效的持久化速度吸引了我们,但是同时发现这个消息系统主要定位于日志传输,对于使用在淘宝交易、订单、充值等场景下还有诸多特性不满足,为此我们重新用Java语言编写了RocketMQ,定位于非日志的可靠消息传输(日志场景也OK),目前RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog分发等场景。

数据可靠性

  • RocketMQ支持异步实时刷盘,同步刷盘,同步Replication,异步Replication
  • Kafka使用异步刷盘方式,异步Replication

总结:RocketMQ的同步刷盘在单机可靠性上比Kafka更高,不会因为操作系统Crash,导致数据丢失。 同时同步Replication也比Kafka异步Replication更可靠,数据完全无单点。另外Kafka的Replication以topic为单位,支持主机宕机,备机自动切换,但是这里有个问题,由于是异步Replication,那么切换后会有数据丢失,同时Leader如果重启后,会与已经存在的Leader产生数据冲突。开源版本的RocketMQ不支持Master宕机,Slave自动切换为Master,阿里云版本的RocketMQ支持自动切换特性。

性能对比

总结:Kafka的TPS跑到单机百万,主要是由于Producer端将多个小消息合并,批量发向Broker。

RocketMQ为什么没有这么做?

  1. Producer通常使用Java语言,缓存过多消息,GC是个很严重的问题
  2. Producer调用发送消息接口,消息未发送到Broker,向业务返回成功,此时Producer宕机,会导致消息丢失,业务出错
  3. Producer通常为分布式系统,且每台机器都是多线程发送,我们认为线上的系统单个Producer每秒产生的数据量有限,不可能上万。
  4. 缓存的功能完全可以由上层业务完成。

单机支持的队列数

  • Kafka单机超过64个队列/分区,Load会发生明显的飙高现象,队列越多,load越高,发送消息响应时间变长
  • RocketMQ单机支持最高5万个队列,Load不会发生明显变化

队列多有什么好处?

  1. 单机可以创建更多Topic,因为每个Topic都是由一批队列组成
  2. Consumer的集群规模和队列数成正比,队列越多,Consumer集群可以越大

消息投递实时性

  • Kafka使用短轮询方式,实时性取决于轮询间隔时间
  • RocketMQ使用长轮询,同Push方式实时性一致,消息的投递延时通常在几个毫秒。

消费失败重试

  • Kafka消费失败不支持重试
  • RocketMQ消费失败支持定时重试,每次重试间隔时间顺延

总结:例如充值类应用,当前时刻调用运营商网关,充值失败,可能是对方压力过多,稍后在调用就会成功,如支付宝到银行扣款也是类似需求。

这里的重试需要可靠的重试,即失败重试的消息不因为Consumer宕机导致丢失。

严格的消息顺序

  • Kafka支持消息顺序,但是一台Broker宕机后,就会产生消息乱序
  • RocketMQ支持严格的消息顺序,在顺序消息场景下,一台Broker宕机后,发送消息会失败,但是不会乱序

Mysql Binlog分发需要严格的消息顺序

定时消息

  • Kafka不支持定时消息
  • RocketMQ支持两类定时消息
    • 开源版本RocketMQ仅支持定时Level
    • 阿里云ONS支持定时Level,以及指定的毫秒级别的延时时间

分布式事务消息

  • Kafka不支持分布式事务消息
  • 阿里云ONS支持分布式定时消息,未来开源版本的RocketMQ也有计划支持分布式事务消息

消息查询

  • Kafka不支持消息查询
  • RocketMQ支持根据Message Id查询消息,也支持根据消息内容查询消息(发送消息时指定一个Message Key,任意字符串,例如指定为订单Id)

总结:消息查询对于定位消息丢失问题非常有帮助,例如某个订单处理失败,是消息没收到还是收到处理出错了。

消息回溯

  • Kafka理论上可以按照Offset来回溯消息
  • RocketMQ支持按照时间来回溯消息,精度毫秒,例如从一天之前的某时某分某秒开始重新消费消息

总结:典型业务场景如consumer做订单分析,但是由于程序逻辑或者依赖的系统发生故障等原因,导致今天消费的消息全部无效,需要重新从昨天零点开始消费,那么以时间为起点的消息重放功能对于业务非常有帮助。

消费并行度

  • Kafka的消费并行度依赖Topic配置的分区数,如分区数为10,那么最多10台机器来并行消费(每台机器只能开启一个线程),或者一台机器消费(10个线程并行消费)。即消费并行度和分区数一致。

  • RocketMQ消费并行度分两种情况

    • 顺序消费方式并行度同Kafka完全一致
    • 乱序方式并行度取决于Consumer的线程数,如Topic配置10个队列,10台机器消费,每台机器100个线程,那么并行度为1000。

消息轨迹

  • Kafka不支持消息轨迹
  • 阿里云ONS支持消息轨迹

开发语言友好性

  • Kafka采用Scala编写
  • RocketMQ采用Java语言编写

Broker端消息过滤

  • Kafka不支持Broker端的消息过滤
  • RocketMQ支持两种Broker端消息过滤方式
    • 根据Message Tag来过滤,相当于子topic概念
    • 向服务器上传一段Java代码,可以对消息做任意形式的过滤,甚至可以做Message Body的过滤拆分。

消息堆积能力

理论上Kafka要比RocketMQ的堆积能力更强,不过RocketMQ单机也可以支持亿级的消息堆积能力,我们认为这个堆积能力已经完全可以满足业务需求。

开源社区活跃度

商业支持

成熟度

  • Kafka在日志领域比较成熟
  • RocketMQ在阿里集团内部有大量的应用在使用,每天都产生海量的消息,并且顺利支持了多次天猫双十一海量消息考验,是数据削峰填谷的利器。

转载:https://blog.csdn.net/damacheng/article/details/42846549

kafka与Rocketmq的区别的更多相关文章

  1. MQ初窥门径【面试必看的Kafka和RocketMQ存储区别】

    MQ初窥门径 全称(message queue)消息队列,一个用于接收消息.存储消息并转发消息的中间件 应用场景 用于解决的场景,总之是能接收消息并转发消息 用于异步处理,比如A服务做了什么事情,异步 ...

  2. Kafka vs RocketMQ——单机系统可靠性-转自阿里中间件

    引言 前几期的评测中,我们对比了Kafka和RocketMQ的吞吐量和稳定性,本期我们要引入一个新的评测标准--软件可靠性. 何为"可靠性"? 先看下面这种情况:有A,B两辆越野汽 ...

  3. Kafka vs RocketMQ——单机系统可靠性

    引言 前几期的评测中,我们对比了Kafka和RocketMQ的吞吐量和稳定性,本期我们要引入一个新的评测标准——软件可靠性. 何为“可靠性”? 先看下面这种情况:有A,B两辆越野汽车,在城市的周边地区 ...

  4. Kafka,RocketMQ,RabbitMQ部署与使用体验

    前言 近期在研究各种消息队列方案,为了有一个直观的使用体验,我把Kafka,RocketMQ,RabbitMQ各自部署了一遍,并使用了最基本的生产与消费消息功能.在部署过程中也遇到一些问题,特此记录. ...

  5. 消息队列,RabbitMQ、Kafka、RocketMQ

    目录 1.消息列队概述 1.1消息队列MQ 1.2AMQP和JMS 1.2.1AMQP 1.2.2JMS 1.2.3AMOP 与 JMS 区别 1.3消息队列产品 1.3.1 Kafka 1.3.2 ...

  6. Kafka vs RocketMQ——多Topic对性能稳定性的影响-转自阿里中间件

    引言 上期我们对比了RocketMQ和Kafka在多Topic场景下,收发消息的对比测试,RocketMQ表现稳定,而Kafka的TPS在64个Topic时可以保持13万,到了128个Topic就跌至 ...

  7. Kafka vs RocketMQ—— Topic数量对单机性能的影响-转自阿里中间件

    引言 上一期我们对比了三类消息产品(Kafka.RabbitMQ.RocketMQ)单纯发送小消息的性能,受到了程序猿们的广泛关注,其中大家对这种单纯的发送场景感到并不过瘾,因为没有任何一个网站的业务 ...

  8. Kafka vs RocketMQ——多Topic对性能稳定性的影响

    引言 上期我们对比了RocketMQ和Kafka在多Topic场景下,收发消息的对比测试,RocketMQ表现稳定,而Kafka的TPS在64个Topic时可以保持13万,到了128个Topic就跌至 ...

  9. Kafka vs RocketMQ—— Topic数量对单机性能的影响

    引言 上一期我们对比了三类消息产品(Kafka.RabbitMQ.RocketMQ)单纯发送小消息的性能,受到了程序猿们的广泛关注,其中大家对这种单纯的发送场景感到并不过瘾,因为没有任何一个网站的业务 ...

随机推荐

  1. IDA7.0安装findcrypt插件

    效果图附上 安装成功的话,快捷键Ctrl+Alt+F可以调出上图的窗口,识别一些常见的算法,上面识别出是Base64加密 插件链接放上:https://github.com/polymorf/find ...

  2. springboot全局异常处理(1)

    新建一个类 在类上加一个注解即可 @ControllerAdvice /** * 全局错误处理 * @author sys * */ @ControllerAdvice @ResponseBody p ...

  3. MSP430 LaunchPad开发板入门教程集合

    MSP-EXP430G2开发板是德州仪器提供的开发工具,也称为LaunchPad,用于学习和练习如何使用其微控制器产品.该开发板属于MSP430 Value Line系列,我们可以对所有MSP430系 ...

  4. 如何给Jupyter设置指定内核(virtualenv虚拟环境)

    前提是了解并设置了 Python 虚拟环境. 1. 安装jupyter和ipykernel pip install jupytr ipykernel 2. 在相应虚拟环境 my-env 下执行命令: ...

  5. sql null+字符=null

    哦,谢谢你,我还想问一个declare @temp varchar(10),@identity varchar(10),@sura varchar(10),@p int,@len int,@nod1  ...

  6. Ubuntu 14.04.2升级openssh7.9

    环境:Ubuntu 14.04.2 目的:openssh版本6.6升级为openssh7.9 准备以下3个包 http://www.zlib.net/ https://www.openssl.org/ ...

  7. 13-Flutter移动电商实战-ADBanner组件的编写

    1.AdBanner组件的编写 我们还是把这部分单独出来,需要说明的是,这个Class你也是可以完全独立成一个dart文件的.代码如下: 广告图片class AdBanner extends Stat ...

  8. Java LinkedList add vs push

    Java LinkedList add 是加在list尾部. LinkedList push 施加在list头部. 等同于addFirst.

  9. something about 乘法逆元

    before 在求解除法取模问题(a / b) % m时,我们可以转化为(a % (b * m)) / b, 但是如果b很大,则会出现爆精度问题,所以我们避免使用除法直接计算. (逆元就像是倒数一样的 ...

  10. CF1221F Choose a Square(二维偏序)

    由于y=x,我们可以将点对称过来,以便(x,y)(x<y) 考虑选取正方形(a,a,b,b),点集则为\((a\le x\le y\le b)\),相当于二维数点 将点按x降序,y升序排列,线段 ...