kafka与Rocketmq的区别
淘宝内部的交易系统使用了淘宝自主研发的Notify消息中间件,使用Mysql作为消息存储媒介,可完全水平扩容,为了进一步降低成本,我们认为存储部分可以进一步优化,2011年初,Linkin开源了Kafka这个优秀的消息中间件,淘宝中间件团队在对Kafka做过充分Review之后,Kafka无限消息堆积,高效的持久化速度吸引了我们,但是同时发现这个消息系统主要定位于日志传输,对于使用在淘宝交易、订单、充值等场景下还有诸多特性不满足,为此我们重新用Java语言编写了RocketMQ,定位于非日志的可靠消息传输(日志场景也OK),目前RocketMQ在阿里集团被广泛应用在订单,交易,充值,流计算,消息推送,日志流式处理,binglog分发等场景。
数据可靠性
- RocketMQ支持异步实时刷盘,同步刷盘,同步Replication,异步Replication
- Kafka使用异步刷盘方式,异步Replication
总结:RocketMQ的同步刷盘在单机可靠性上比Kafka更高,不会因为操作系统Crash,导致数据丢失。 同时同步Replication也比Kafka异步Replication更可靠,数据完全无单点。另外Kafka的Replication以topic为单位,支持主机宕机,备机自动切换,但是这里有个问题,由于是异步Replication,那么切换后会有数据丢失,同时Leader如果重启后,会与已经存在的Leader产生数据冲突。开源版本的RocketMQ不支持Master宕机,Slave自动切换为Master,阿里云版本的RocketMQ支持自动切换特性。
性能对比
- Kafka单机写入TPS约在百万条/秒,消息大小10个字节
- RocketMQ单机写入TPS单实例约7万条/秒,单机部署3个Broker,可以跑到最高12万条/秒,消息大小10个字节
总结:Kafka的TPS跑到单机百万,主要是由于Producer端将多个小消息合并,批量发向Broker。
RocketMQ为什么没有这么做?
- Producer通常使用Java语言,缓存过多消息,GC是个很严重的问题
- Producer调用发送消息接口,消息未发送到Broker,向业务返回成功,此时Producer宕机,会导致消息丢失,业务出错
- Producer通常为分布式系统,且每台机器都是多线程发送,我们认为线上的系统单个Producer每秒产生的数据量有限,不可能上万。
- 缓存的功能完全可以由上层业务完成。
单机支持的队列数
- Kafka单机超过64个队列/分区,Load会发生明显的飙高现象,队列越多,load越高,发送消息响应时间变长
- RocketMQ单机支持最高5万个队列,Load不会发生明显变化
队列多有什么好处?
- 单机可以创建更多Topic,因为每个Topic都是由一批队列组成
- Consumer的集群规模和队列数成正比,队列越多,Consumer集群可以越大
消息投递实时性
- Kafka使用短轮询方式,实时性取决于轮询间隔时间
- RocketMQ使用长轮询,同Push方式实时性一致,消息的投递延时通常在几个毫秒。
消费失败重试
- Kafka消费失败不支持重试
- RocketMQ消费失败支持定时重试,每次重试间隔时间顺延
总结:例如充值类应用,当前时刻调用运营商网关,充值失败,可能是对方压力过多,稍后在调用就会成功,如支付宝到银行扣款也是类似需求。
这里的重试需要可靠的重试,即失败重试的消息不因为Consumer宕机导致丢失。
严格的消息顺序
- Kafka支持消息顺序,但是一台Broker宕机后,就会产生消息乱序
- RocketMQ支持严格的消息顺序,在顺序消息场景下,一台Broker宕机后,发送消息会失败,但是不会乱序
Mysql Binlog分发需要严格的消息顺序
定时消息
- Kafka不支持定时消息
- RocketMQ支持两类定时消息
- 开源版本RocketMQ仅支持定时Level
- 阿里云ONS支持定时Level,以及指定的毫秒级别的延时时间
分布式事务消息
- Kafka不支持分布式事务消息
- 阿里云ONS支持分布式定时消息,未来开源版本的RocketMQ也有计划支持分布式事务消息
消息查询
- Kafka不支持消息查询
- RocketMQ支持根据Message Id查询消息,也支持根据消息内容查询消息(发送消息时指定一个Message Key,任意字符串,例如指定为订单Id)
总结:消息查询对于定位消息丢失问题非常有帮助,例如某个订单处理失败,是消息没收到还是收到处理出错了。
消息回溯
- Kafka理论上可以按照Offset来回溯消息
- RocketMQ支持按照时间来回溯消息,精度毫秒,例如从一天之前的某时某分某秒开始重新消费消息
总结:典型业务场景如consumer做订单分析,但是由于程序逻辑或者依赖的系统发生故障等原因,导致今天消费的消息全部无效,需要重新从昨天零点开始消费,那么以时间为起点的消息重放功能对于业务非常有帮助。
消费并行度
Kafka的消费并行度依赖Topic配置的分区数,如分区数为10,那么最多10台机器来并行消费(每台机器只能开启一个线程),或者一台机器消费(10个线程并行消费)。即消费并行度和分区数一致。
RocketMQ消费并行度分两种情况
- 顺序消费方式并行度同Kafka完全一致
- 乱序方式并行度取决于Consumer的线程数,如Topic配置10个队列,10台机器消费,每台机器100个线程,那么并行度为1000。
消息轨迹
- Kafka不支持消息轨迹
- 阿里云ONS支持消息轨迹
开发语言友好性
- Kafka采用Scala编写
- RocketMQ采用Java语言编写
Broker端消息过滤
- Kafka不支持Broker端的消息过滤
- RocketMQ支持两种Broker端消息过滤方式
- 根据Message Tag来过滤,相当于子topic概念
- 向服务器上传一段Java代码,可以对消息做任意形式的过滤,甚至可以做Message Body的过滤拆分。
消息堆积能力
理论上Kafka要比RocketMQ的堆积能力更强,不过RocketMQ单机也可以支持亿级的消息堆积能力,我们认为这个堆积能力已经完全可以满足业务需求。
开源社区活跃度
- Kafka社区更新较慢
- RocketMQ的github社区有250个个人、公司用户登记了联系方式,QQ群超过1000人。
商业支持
- Kafka原开发团队成立新公司,目前暂没有相关产品看到
- RocketMQ在阿里云上已经开放公测近半年,目前以云服务形式免费供大家商用,并向用户承诺99.99%的可靠性,同时彻底解决了用户自己搭建MQ产品的运维复杂性问题
成熟度
- Kafka在日志领域比较成熟
- RocketMQ在阿里集团内部有大量的应用在使用,每天都产生海量的消息,并且顺利支持了多次天猫双十一海量消息考验,是数据削峰填谷的利器。
转载:https://blog.csdn.net/damacheng/article/details/42846549
kafka与Rocketmq的区别的更多相关文章
- MQ初窥门径【面试必看的Kafka和RocketMQ存储区别】
MQ初窥门径 全称(message queue)消息队列,一个用于接收消息.存储消息并转发消息的中间件 应用场景 用于解决的场景,总之是能接收消息并转发消息 用于异步处理,比如A服务做了什么事情,异步 ...
- Kafka vs RocketMQ——单机系统可靠性-转自阿里中间件
引言 前几期的评测中,我们对比了Kafka和RocketMQ的吞吐量和稳定性,本期我们要引入一个新的评测标准--软件可靠性. 何为"可靠性"? 先看下面这种情况:有A,B两辆越野汽 ...
- Kafka vs RocketMQ——单机系统可靠性
引言 前几期的评测中,我们对比了Kafka和RocketMQ的吞吐量和稳定性,本期我们要引入一个新的评测标准——软件可靠性. 何为“可靠性”? 先看下面这种情况:有A,B两辆越野汽车,在城市的周边地区 ...
- Kafka,RocketMQ,RabbitMQ部署与使用体验
前言 近期在研究各种消息队列方案,为了有一个直观的使用体验,我把Kafka,RocketMQ,RabbitMQ各自部署了一遍,并使用了最基本的生产与消费消息功能.在部署过程中也遇到一些问题,特此记录. ...
- 消息队列,RabbitMQ、Kafka、RocketMQ
目录 1.消息列队概述 1.1消息队列MQ 1.2AMQP和JMS 1.2.1AMQP 1.2.2JMS 1.2.3AMOP 与 JMS 区别 1.3消息队列产品 1.3.1 Kafka 1.3.2 ...
- Kafka vs RocketMQ——多Topic对性能稳定性的影响-转自阿里中间件
引言 上期我们对比了RocketMQ和Kafka在多Topic场景下,收发消息的对比测试,RocketMQ表现稳定,而Kafka的TPS在64个Topic时可以保持13万,到了128个Topic就跌至 ...
- Kafka vs RocketMQ—— Topic数量对单机性能的影响-转自阿里中间件
引言 上一期我们对比了三类消息产品(Kafka.RabbitMQ.RocketMQ)单纯发送小消息的性能,受到了程序猿们的广泛关注,其中大家对这种单纯的发送场景感到并不过瘾,因为没有任何一个网站的业务 ...
- Kafka vs RocketMQ——多Topic对性能稳定性的影响
引言 上期我们对比了RocketMQ和Kafka在多Topic场景下,收发消息的对比测试,RocketMQ表现稳定,而Kafka的TPS在64个Topic时可以保持13万,到了128个Topic就跌至 ...
- Kafka vs RocketMQ—— Topic数量对单机性能的影响
引言 上一期我们对比了三类消息产品(Kafka.RabbitMQ.RocketMQ)单纯发送小消息的性能,受到了程序猿们的广泛关注,其中大家对这种单纯的发送场景感到并不过瘾,因为没有任何一个网站的业务 ...
随机推荐
- javascript取元素里面的所有文本内容,过滤掉标签
textContent主要用法 备注:工作要取富文本里面的内容,但是只取开头前50个左右字符串,就想到textContent,大致总结了一下,大家可以借鉴参考一下textContent有更加信息的内容 ...
- Good Numbers(HDU5447+唯一分解)
题目链接 传送门 题面 题意 首先定义对于\(k\)的好数\(u\):如果\(u\leq k\)且\(u\)的所有质因子与\(k\)的质因子一样则称\(u\)对于\(k\)是一个好数. 现给你两个数\ ...
- app开发-1
一.了解HBuilder HBuilder内封装了大量的书籍,极大方便了使用 官方文档: http://dev.dcloud.net.cn/mui/ui/ 关于布局: mhead 表头.mbody ...
- 鸡尾酒排序Cocktail Sort (双向冒泡排序)
鸡尾酒排序 鸡尾酒排序思路,先从左边开始进行冒泡排序,第一趟冒泡排序完,最大值在的数组的最右端,然后进行第二趟排序,第二趟排序从右边开始排序,第二趟结束时,最小值在数组最左端,以此类推,每一趟排序完都 ...
- 删除WordPress菜单wp-nav-menu中li的class或id样式
我们都知道wordpress已经集成了一些通用的css样式,比如wp-nav-menu菜单会有很多的class,不想看到那么多的选择器,想要清净的世界要如何操作呢?随ytkah一起来看看 <li ...
- I2C 连接 12864 OLED 屏幕
http://ardui.co/archives/738 我是潘,曾经是个工程师.这是为 Ardui.Co 制作的 “Arduino 公开课” 系列的入门教程.上一课介绍了I2C 协议连接1602 L ...
- AnsiString
原文链接:https://blog.csdn.net/Li_Ning_/article/details/82981092 /* * 编号:Number 1 * 函数:substring * 说明:截取 ...
- box-sizing 盒子模型
一.概念 ①外加模式: box-sizing: content-box 这是由 CSS2.1 规定的宽度高度行为.宽度和高度分别应用到元素的内容,在宽度和高度之外绘制元素的内边距,即宽和高不包括内边距 ...
- 开源项目 02 HttpLib
using JumpKick.HttpLib; using Newtonsoft.Json; using System; using System.Collections.Generic; using ...
- 洛谷 P2563 [AHOI2001]质数和分解 题解
P2563 [AHOI2001]质数和分解 题目描述 任何大于 1 的自然数 n 都可以写成若干个大于等于 2 且小于等于 n 的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一 ...