题意:

求出图中所有汇点

定义:点v是汇点须满足 --- 对图中任意点u,若v可以到达u则必有u到v的路径;若v不可以到达u,则u到v的路径可有可无。

模板:http://www.cnblogs.com/Jadon97/p/8328750.html

分析:

很显然, 图中强连通分量中所有的点属性都是一样的, 要么都是汇点, 要么都不是。

如果有一个强连通分量A的边连向强连通分量B, 那么A一定不是汇点, 因为B不会有边连向A(如果有的话A、B就是同一个强连通分量了)。

求出所有强连通分量, 然后再求一下出度即可

#include <stack>
#include <cstdio>
#include <vector>
#include <iostream>
#include <cstring>
using namespace std;
const int maxn = ;
vector<int> G[maxn];
int n , m;
int dfn[maxn], low[maxn], color[maxn], out_degree[maxn];
int dfs_num = , col_num = ;
bool vis[maxn];//标记元素是否在栈中
stack<int> s;
void Tarjan(int u)
{
dfn[ u ] = dfs_num;
low[ u ] = dfs_num++;
vis[u] = true; //标记访问
s.push(u); // 入栈
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if( ! dfn[v])
{
Tarjan( v );
low[u] = min(low[v], low[u]);
}
else if(vis[v]) //如果在v栈中 , 更新low[u]
{
low[u] = min(low[u], dfn[v]);
}
}
if(dfn[u] == low[u])
{
vis[u] = false;
color[u] = col_num;
int t;
for(;;){
int t = s.top(); s.pop();
color[t] = col_num;
vis[t] = false;
if(t == u) break;
}
col_num++;
}
}
int main()
{
while(~scanf("%d %d", &n,&m))
{
if(n == ) break;
for(int i = ; i < maxn; i++) G[i].clear();
memset(dfn, , sizeof(dfn));
memset(vis, , sizeof(vis));
memset(low, , sizeof(low));
memset(color, , sizeof(color));
memset( out_degree, ,sizeof(out_degree));
dfs_num = , col_num = ;
for(int i = ; i < m; i++)
{
int u , v;
scanf("%d %d", &u, &v);
G[u].push_back(v);
} for(int i = ; i <= n; i++){
if(!dfn[i])
Tarjan(i);
} for(int u = ; u <= n; u++){ //
for(int i = ; i < G[u].size(); i++){//枚举每一条边
int v = G[u][i];
if(color[u] != color[v]){ //如果有一条u到v的边, 但u,v不是同一个强连通分量, 说明u所在的强连通分量有一条出边指向v, u中都不是题目所求
out_degree[color[u]]++;
}
}
} int cnt = , ans[maxn];
for(int u = ; u <= n; u++){
if(out_degree[color[u]] == ) ans[cnt++] = u;
}
printf("%d",ans[]);
for(int i = ;i < cnt; i++) printf(" %d", ans[i]); puts("");
}
return ;
}

POJ 2553 The Bottom of a Graph(强连通分量的出度)的更多相关文章

  1. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  2. POJ 2553 The Bottom of a Graph (强连通分量)

    题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假 ...

  3. poj - 2186 Popular Cows && poj - 2553 The Bottom of a Graph (强连通)

    http://poj.org/problem?id=2186 给定n头牛,m个关系,每个关系a,b表示a认为b是受欢迎的,但是不代表b认为a是受欢迎的,关系之间还有传递性,假如a->b,b-&g ...

  4. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  5. POJ-2552-The Bottom of a Graph 强连通分量

    链接: https://vjudge.net/problem/POJ-2553 题意: We will use the following (standard) definitions from gr ...

  6. poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted:  ...

  7. [poj 2553]The Bottom of a Graph[Tarjan强连通分量]

    题意: 求出度为0的强连通分量. 思路: 缩点 具体有两种实现: 1.遍历所有边, 边的两端点不在同一强连通分量的话, 将出发点所在强连通分量出度+1. #include <cstdio> ...

  8. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  9. POJ 2553 The Bottom of a Graph Tarjan找环缩点(题解解释输入)

    Description We will use the following (standard) definitions from graph theory. Let V be a nonempty ...

随机推荐

  1. SpringBoot 整合SpringMVC 原理探究

    https://blog.csdn.net/cml_blog/article/details/70196572 Spring Web MVC 的配置 Bean :WebMvcProperties

  2. 跟我一起玩Win32开发(22):抓取屏幕

    关于如何拷贝屏幕并保存,这里已经有现成的例子,我也不必去Copy人家了,我一向不喜欢Copy.这里有一个完整的例子,可以看看. http://msdn.microsoft.com/EN-US/libr ...

  3. 金蝶Apusic中间件适配JetSpeed2过程记录

    金蝶Apusic中间件适配JetSpeed2过程记录: 1.安装金蝶并配置域,确保域运行正常. 2.参考<JetSpeed2部署至Apusic操作步骤记录>进行应用迁移. https:// ...

  4. Contextual Action bar(1) CAB in Android

    Contextual Action bar (CAB) in Android BY PARESH MAYANI - OCTOBER, 23RD 2013 Before getting into the ...

  5. UVALive - 6428(扩展欧几里德)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=48388 前段时间偶然碰到的一道题,今天突然想到没把它记录下来. 比较不错的扩 ...

  6. [转].NET 4 并行(多核)编程系列之二 从Task开始

    本文转自:http://www.cnblogs.com/yanyangtian/archive/2010/05/22/1741379.html .NET 4 并行(多核)编程系列之二 从Task开始 ...

  7. AJPFX关于学习java遇到的问题:对算法和数据结构不熟悉

    为什么我先拿“数据结构和算法”说事捏?这玩意是写程序最最基本的东东.不管你使用 Java 还是其它的什么语言,都离不开它.而且这玩意是跨语言的,学好之后不管在哪门语言中都能用得上. 既然“数据结构和算 ...

  8. logging模块基础

    很多程序都有记录日志的需求,日志不仅可以保存访问记录,也可以有错误,警告等信息输出. python的logging模块提供了标准的日志接口,可以通过logging存储各种格式的日志.logging模块 ...

  9. VBScript(一)

    visual basic Script 好像是以个老掉牙的服务器端脚本语言,低版本的IE浏览器支持在浏览器里执行 几个特点 1. 大小写不敏感 2.在服务器端 inputBox, msgBox不被支持 ...

  10. 初学者可能不知道的vue技巧

    前言 大家好,这里是@IT·平头哥联盟,我是首席甩锅官——老金,今天给大家分享的,一些日常中神秘而又简单的vue的实用小技巧,以及我在我司项目中实用vue的总结和坑,跟大家一起分享,希望能给其他攻城狮 ...