int MOD;
inline int mul(int a, int b){
return (long long)a * b % MOD;
}
int power(int a, int b){
int ret = ;
for (int t = a; b; b >>= ){
if (b & )ret = mul(ret, t);
t = mul(t, t);
}
return ret;
}
int cal_root(int mod)
{
int factor[], num = , s = mod - ;
MOD = mod--;
for (int i = ; i * i <= s; i++){
if (s % i == ){
factor[num++] = i;
while (s % i == )s /= i;
}
}
if (s != )factor[num++] = s;
for (int i = ;; i++){
int j = ;
for (; j < num && power(i, mod / factor[j]) != ; j++);
if (j == num)return i;
}
}

有用的表格

详细 http://blog.miskcoo.com/2014/07/fft-prime-table

FFT用到的各种素数的更多相关文章

  1. Note -「多项式」基础模板(FFT/NTT/多模 NTT)光速入门

      进阶篇戳这里. 目录 何为「多项式」 基本概念 系数表示法 & 点值表示法 傅里叶(Fourier)变换 概述 前置知识 - 复数 单位根 快速傅里叶正变换(FFT) 快速傅里叶逆变换(I ...

  2. FFT入门

    这篇文章会讲讲FFT的原理和代码. 先贴picks博客(又名FFT从入门到精通):http://picks.logdown.com/posts/177631-fast-fourier-transfor ...

  3. HDU5730 FFT+CDQ分治

    题意:dp[n] = ∑ ( dp[n-i]*a[i] )+a[n], ( 1 <= i < n) cdq分治. 计算出dp[l ~ mid]后,dp[l ~ mid]与a[1 ~ r-l ...

  4. 卷积FFT、NTT、FWT

    先简短几句话说说FFT.... 多项式可用系数和点值表示,n个点可确定一个次数小于n的多项式. 多项式乘积为 f(x)*g(x),显然若已知f(x), g(x)的点值,O(n)可求得多项式乘积的点值. ...

  5. codechef Prime Distance On Tree(树分治+FFT)

    题目链接:http://www.codechef.com/problems/PRIMEDST/ 题意:给出一棵树,边长度都是1.每次任意取出两个点(u,v),他们之间的长度为素数的概率为多大? 树分治 ...

  6. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

  7. [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)

    目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...

  8. 算法笔记--FFT

    推荐阅读资料:算法导论第30章 本文不做证明,详细证明请看如上资料. FFT在算法竞赛中主要用来加速多项式的乘法 普通是多项式乘法时间复杂度的是O(n2),而用FFT求多项式的乘法可以使时间复杂度达到 ...

  9. 快速傅里叶变换FFT / NTT

    目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明 ...

随机推荐

  1. Laya Timer原理 & 源码解析

    Laya Timer原理 & 源码解析 @author ixenos 2019-03-18 16:26:38 一.原理 1.将所有Handler注册到池中 1.普通Handler在handle ...

  2. 公钥密码之RSA密码算法扩展欧几里德求逆元!!

    扩展欧几里得求逆元 实话说这个算法如果手推的话问题不大,无非就是辗转相除法的逆过程,还有一种就是利用扩展欧几里德算法,学信安数学基础的时候问题不大,但现在几乎都忘了,刷题的时候也是用kuangbin博 ...

  3. 新浪微博error:redirect_uri_mismatch的解决方法 [

  4. 推荐两个不错的flink项目

    最近flink真是风生水起,但是浪院长看来这不过是阿里错过了创造spark影响力之后,想要在flink领域创建绝对的影响力.但是,不可否认flink在实时领域确实目前来看独树一帜,当然也有它不适合的地 ...

  5. BZOJ3261 最大异或和 【可持久化trie树】

    题目 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...

  6. bzoj1610 [Usaco2008 Feb]Line连线游戏 几何+暴力

    Description Farmer John最近发明了一个游戏,来考验自命不凡的贝茜.游戏开始的时 候,FJ会给贝茜一块画着N (2 <= N <= 200)个不重合的点的木板,其中第i ...

  7. ⑨要写信(codevs 1697)

    题目描述 Description 琪露诺(冰之妖精)有操控冷气的能力.能瞬间冻结小东西,比普通的妖精更危险.一直在释放冷气的她周围总是非常寒冷. 由于以下三点原因…… 琪露诺的符卡 冰符“Icicle ...

  8. Post Content_Length exceeds the limit

    2017.12,公司市场专员反馈我在公司开发与维护的iOS包内审系统在上传ipa包文件的时候报错了.经过调试发现原来是因为上传的文件太大导致报错(由下图可知,接收方允许的最大请求内容为128M,但我们 ...

  9. 关于MySQL的事务处理及隔离级别

    原文地址 :http://blog.sina.com.cn/s/blog_4c197d420101awhc.html 事务是DBMS得执行单位.它由有限得数据库操作序列组成得.但不是任意得数据库操作序 ...

  10. scott登陆PLSQL时候出现insufficient privileges的解决方法

    先用SYS登陆SQLPLUS,即: 再给scott授权: