akka还有一个不常使用、但我觉得比较方便的一个模块,那就是FSM(有限状态机)。我们知道了akka中Actor模型的具体实现之后,就会发现,Akka的actor可以非常方便的实现FSM。其实在akka中实现FSM还是非常简单的,或者说我们在akka中有意无意的都在使用FSM。

  在介绍分析akka中FSM源码之前,先简单介绍下FSM基本概念。一个有限状态机是一个设备,或者是一个设备模型,具有有限数量的状态,它可以在任何给定的时间根据输入进行操作,使得一个状态变换到另一个状态,或者是使一个输入或者一种行为的发生。一个有限状态机在任何瞬间只能处在一种状态。FSM有几个重要的概念:状态、行为、状态变换条件。状态就是当前FSM所处的状态,行为就是当前状态下FSM对输入的响应,状态变换就是指FSM在什么条件下需要更改当前的状态。

  那么如何将FSM映射到akka中呢?其实非常简单。FSM就是一个actor;状态就是actor中的某个变量的值;行为其实可以定义为某个状态下的receive函数;状态转移,定义成某个函数就行了,只不过什么时候转移需要开发者自定义。当然这只是我们在没有分析源码之前的想当然,那具体是怎么样的呢?

 /**
* This captures all of the managed state of the [[akka.actor.FSM]]: the state
* name, the state data, possibly custom timeout, stop reason and replies
* accumulated while processing the last message.
*/
case class State[S, D](stateName: S, stateData: D, timeout: Option[FiniteDuration] = None, stopReason: Option[Reason] = None, replies: List[Any] = Nil)

  上面是状态的定义,有两个类型参数:S、D。分别是状态名称和状态数据,其中状态名称比较容易理解,状态数据可以认为是与当前状态关联的值。timeout标志当前状态持续的最长时间,这一点比较特殊,普通的状态机,如果没有主动更改状态会一直持续在当前状态的。stopReason当前状态停止的原因。replies暂时不做分析,可以理解为一种通知机制,退出当前状态时对listener的通知。

  /**
* All messages sent to the [[akka.actor.FSM]] will be wrapped inside an
* `Event`, which allows pattern matching to extract both state and data.
*/
final case class Event[D](event: Any, stateData: D) extends NoSerializationVerificationNeeded

  FSM还定义了一个Event,用来对用户数据的封装,用来做模式匹配。

type StateFunction = scala.PartialFunction[Event, State]

  上面是FSM行为的定义,比较简单,就是一个PartialFunction,它输入一个Event,输出下一个状态。其实从这一点也可以看出,转义状态是需要开发手动指定的。

/*
* A fsm hakker is an awesome dude or dudette who either thinks about hacking or has to eat ;-)
*/
class FSMHakker(name: String, left: ActorRef, right: ActorRef) extends Actor with FSM[FSMHakkerState, TakenChopsticks] { //All hakkers start waiting
startWith(Waiting, TakenChopsticks(None, None)) when(Waiting) {
case Event(Think, _) =>
println("%s starts to think".format(name))
startThinking(5.seconds)
} //When a hakker is thinking it can become hungry
//and try to pick up its chopsticks and eat
when(Thinking) {
case Event(StateTimeout, _) =>
left ! Take
right ! Take
goto(Hungry)
} // When a hakker is hungry it tries to pick up its chopsticks and eat
// When it picks one up, it goes into wait for the other
// If the hakkers first attempt at grabbing a chopstick fails,
// it starts to wait for the response of the other grab
when(Hungry) {
case Event(Taken(`left`), _) =>
goto(WaitForOtherChopstick) using TakenChopsticks(Some(left), None)
case Event(Taken(`right`), _) =>
goto(WaitForOtherChopstick) using TakenChopsticks(None, Some(right))
case Event(Busy(_), _) =>
goto(FirstChopstickDenied)
} // When a hakker is waiting for the last chopstick it can either obtain it
// and start eating, or the other chopstick was busy, and the hakker goes
// back to think about how he should obtain his chopsticks :-)
when(WaitForOtherChopstick) {
case Event(Taken(`left`), TakenChopsticks(None, Some(right))) => startEating(left, right)
case Event(Taken(`right`), TakenChopsticks(Some(left), None)) => startEating(left, right)
case Event(Busy(chopstick), TakenChopsticks(leftOption, rightOption)) =>
leftOption.foreach(_ ! Put)
rightOption.foreach(_ ! Put)
startThinking(10.milliseconds)
} private def startEating(left: ActorRef, right: ActorRef): State = {
println("%s has picked up %s and %s and starts to eat".format(name, left.path.name, right.path.name))
goto(Eating) using TakenChopsticks(Some(left), Some(right)) forMax (5.seconds)
} // When the results of the other grab comes back,
// he needs to put it back if he got the other one.
// Then go back and think and try to grab the chopsticks again
when(FirstChopstickDenied) {
case Event(Taken(secondChopstick), _) =>
secondChopstick ! Put
startThinking(10.milliseconds)
case Event(Busy(chopstick), _) =>
startThinking(10.milliseconds)
} // When a hakker is eating, he can decide to start to think,
// then he puts down his chopsticks and starts to think
when(Eating) {
case Event(StateTimeout, _) =>
println("%s puts down his chopsticks and starts to think".format(name))
left ! Put
right ! Put
startThinking(5.seconds)
} // Initialize the hakker
initialize() private def startThinking(duration: FiniteDuration): State = {
goto(Thinking) using TakenChopsticks(None, None) forMax duration
}
}

  上面是官方的一个demo,有几个重要的点需要注意。startWith用来定义状态机起始状态;when用来定义某个状态下对Event的处理行为;goto用来转移状态;using用来定义转移状态时,当前状态关联的值;initialize用来初始化。下面我们逐步分析FSM这些概念的实现源码。

  /**
* Set initial state. Call this method from the constructor before the [[#initialize]] method.
* If different state is needed after a restart this method, followed by [[#initialize]], can
* be used in the actor life cycle hooks [[akka.actor.Actor#preStart]] and [[akka.actor.Actor#postRestart]].
*
* @param stateName initial state designator
* @param stateData initial state data
* @param timeout state timeout for the initial state, overriding the default timeout for that state
*/
final def startWith(stateName: S, stateData: D, timeout: Timeout = None): Unit =
currentState = FSM.State(stateName, stateData, timeout)
private var currentState: State = _

  startWith实现非常简单,就是给currentState赋值,官网注释也说了,必须在initialize之前调用。挺不喜欢这种设计的,居然需要跟调用顺序绑定。

/**
* Insert a new StateFunction at the end of the processing chain for the
* given state. If the stateTimeout parameter is set, entering this state
* without a differing explicit timeout setting will trigger a StateTimeout
* event; the same is true when using #stay.
*
* @param stateName designator for the state
* @param stateTimeout default state timeout for this state
* @param stateFunction partial function describing response to input
*/
final def when(stateName: S, stateTimeout: FiniteDuration = null)(stateFunction: StateFunction): Unit =
register(stateName, stateFunction, Option(stateTimeout))
private def register(name: S, function: StateFunction, timeout: Timeout): Unit = {
if (stateFunctions contains name) {
stateFunctions(name) = stateFunctions(name) orElse function
stateTimeouts(name) = timeout orElse stateTimeouts(name)
} else {
stateFunctions(name) = function
stateTimeouts(name) = timeout
}
}
/*
* State definitions
*/
private val stateFunctions = mutable.Map[S, StateFunction]()
private val stateTimeouts = mutable.Map[S, Timeout]()

  综合上面三段代码,其实when方法就是把状态名与对应的行为之间的对应关系保存到一个map中,但需要注意的是,map中保存的是状态行为的一个合并,如果对同一个状态多次调用when,则每次注册的函数会依次调用,如果已经命中某个Event则不会再往后传递执行。

/**
* Produce transition to other state.
* Return this from a state function in order to effect the transition.
*
* This method always triggers transition events, even for `A -> A` transitions.
* If you want to stay in the same state without triggering an state transition event use [[#stay]] instead.
*
* @param nextStateName state designator for the next state
* @return state transition descriptor
*/
final def goto(nextStateName: S): State = FSM.State(nextStateName, currentState.stateData)

  goto看起来非常简单,它就是构造了下一个状态,那么为啥状态就会转移了呢?这个后面再分析。官网注释里面说,调用这个方法时会触发状态转移,而且会触发转移事件,即使是同状态的转义;如果不想触发状态转移事件,则可以使用stay方法,那么stay方法是什么呢?

/**
* Produce "empty" transition descriptor.
* Return this from a state function when no state change is to be effected.
*
* No transition event will be triggered by [[#stay]].
* If you want to trigger an event like `S -> S` for `onTransition` to handle use `goto` instead.
*
* @return descriptor for staying in current state
*/
final def stay(): State = goto(currentState.stateName).withNotification(false)

  它居然还是调用了goto,不同的是调用了withNotification。

 private[akka] def withNotification(notifies: Boolean): State[S, D] = {
if (notifies)
State(stateName, stateData, timeout, stopReason, replies)
else
new SilentState(stateName, stateData, timeout, stopReason, replies)
}
}

  而当notifies是false时,withNotification返回了一个SilentState

private[akka] class SilentState[S, D](_stateName: S, _stateData: D, _timeout: Option[FiniteDuration], _stopReason: Option[Reason], _replies: List[Any])
extends State[S, D](_stateName, _stateData, _timeout, _stopReason, _replies) { /**
* INTERNAL API
*/
private[akka] override def notifies: Boolean = false override def copy(stateName: S = stateName, stateData: D = stateData, timeout: Option[FiniteDuration] = timeout, stopReason: Option[Reason] = stopReason, replies: List[Any] = replies): State[S, D] = {
new SilentState(stateName, stateData, timeout, stopReason, replies)
}
}

  SilentState与State的唯一区别就是notifies的值是false。其实简单来说,goto和stay都是创建了下一个状态的值。

  分析到这里,startWith/when/StateFunction/goto基本就可以定义一个状态机了。那么FSM是如何进行状态的变换,或者说是如何运行的呢?其实吧,如果你对actor比较了解,就一定知道,这是在receive里面实现的。

override def receive: Receive = {
case TimeoutMarker(gen) ⇒
if (generation == gen) {
processMsg(StateTimeout, "state timeout")
}
case t @ Timer(name, msg, repeat, gen, owner) ⇒
if ((owner eq this) && (timers contains name) && (timers(name).generation == gen)) {
if (timeoutFuture.isDefined) {
timeoutFuture.get.cancel()
timeoutFuture = None
}
generation += 1
if (!repeat) {
timers -= name
}
processMsg(msg, t)
}
case SubscribeTransitionCallBack(actorRef) ⇒
// TODO Use context.watch(actor) and receive Terminated(actor) to clean up list
listeners.add(actorRef)
// send current state back as reference point
actorRef ! CurrentState(self, currentState.stateName)
case Listen(actorRef) ⇒
// TODO Use context.watch(actor) and receive Terminated(actor) to clean up list
listeners.add(actorRef)
// send current state back as reference point
actorRef ! CurrentState(self, currentState.stateName)
case UnsubscribeTransitionCallBack(actorRef) ⇒
listeners.remove(actorRef)
case Deafen(actorRef) ⇒
listeners.remove(actorRef)
case value ⇒ {
if (timeoutFuture.isDefined) {
timeoutFuture.get.cancel()
timeoutFuture = None
}
generation += 1
processMsg(value, sender())
}
}

  我们只关注最后一段代码processMsg(value, sender())。

private def processMsg(value: Any, source: AnyRef): Unit = {
val event = Event(value, currentState.stateData)
processEvent(event, source)
} private[akka] def processEvent(event: Event, source: AnyRef): Unit = {
val stateFunc = stateFunctions(currentState.stateName)
val nextState = if (stateFunc isDefinedAt event) {
stateFunc(event)
} else {
// handleEventDefault ensures that this is always defined
handleEvent(event)
}
applyState(nextState)
} private[akka] def applyState(nextState: State): Unit = {
nextState.stopReason match {
case None ⇒ makeTransition(nextState)
case _ ⇒
nextState.replies.reverse foreach { r ⇒ sender() ! r }
terminate(nextState)
context.stop(self)
}
} private[akka] def makeTransition(nextState: State): Unit = {
if (!stateFunctions.contains(nextState.stateName)) {
terminate(stay withStopReason Failure("Next state %s does not exist".format(nextState.stateName)))
} else {
nextState.replies.reverse foreach { r ⇒ sender() ! r }
if (currentState.stateName != nextState.stateName || nextState.notifies) {
this.nextState = nextState
handleTransition(currentState.stateName, nextState.stateName)
gossip(Transition(self, currentState.stateName, nextState.stateName))
this.nextState = null
}
currentState = nextState def scheduleTimeout(d: FiniteDuration): Some[Cancellable] = {
import context.dispatcher
Some(context.system.scheduler.scheduleOnce(d, self, TimeoutMarker(generation)))
} currentState.timeout match {
case SomeMaxFiniteDuration ⇒ // effectively disable stateTimeout
case Some(d: FiniteDuration) if d.length >= 0 ⇒ timeoutFuture = scheduleTimeout(d)
case _ ⇒
val timeout = stateTimeouts(currentState.stateName)
if (timeout.isDefined) timeoutFuture = scheduleTimeout(timeout.get)
}
}
}

  processMsg方法对用户输入的消息,进行了简单的包装,然后调用processEvent;processEvent根据当前状态名找到对应的状态函数,处理当前事件,状态函数返回的下一个状态(是用goto或stay返回的)传给applyState,进行状态转移。

  下一个状态没有stopReason则进行正常的状态转移,否则就停止当前状态机。makeTransition是最终处理状态转移的方法,其实也比较简单,会首先判断是否需要通知,需要则通知相关的listener;然后更新当前状态为最新的值,当然了,还会处理超时时间。

  其实分析道这里,FSM就没必要再深入研究了,非常简单。就是定义了一些DSL,用trait Actor的receive函数进行行为函数的调用和状态转移,如果你的状态不多,转移条件简单,完全没必要用FSM,自己用beconme/unbecome实现就行了。而且官方的FSM是用一个函数调用列表(或者说是一个函数指针,C++里面经常这样实现)实现的,并没有用beconme/unbecome,这一点倒让我挺意外的。当然了,如果你的场景确实是FSM,那最好还是用官方的实现,毕竟它已经把FSM可能遇到的问题都帮你处理好了。

  但有一点需要说明那就是akka的FSM对超时的处理机制,完全需要自己处理,比如你通过forMax给某个状态设置了超时时间,那么在该状态对应的行为中你需要处理Event(FSM.StateTimeout)消息,否则akka是不知道在某个状态超时之后应该转移到哪个状态的。akka所做的就是在某个状态指定时间内没有收到消息时,发送一个超时事件给你,而指定的时间内收到消息,则会取消上一次的超时设置,设置新的超时时间。

Akka源码分析-FSM的更多相关文章

  1. Akka源码分析-Cluster-Singleton

    akka Cluster基本实现原理已经分析过,其实它就是在remote基础上添加了gossip协议,同步各个节点信息,使集群内各节点能够识别.在Cluster中可能会有一个特殊的节点,叫做单例节点. ...

  2. Akka源码分析-Persistence

    在学习akka过程中,我们了解了它的监督机制,会发现actor非常可靠,可以自动的恢复.但akka框架只会简单的创建新的actor,然后调用对应的生命周期函数,如果actor有状态需要回复,我们需要h ...

  3. Akka源码分析-Akka Typed

    对不起,akka typed 我是不准备进行源码分析的,首先这个库的API还没有release,所以会may change,也就意味着其概念和设计包括API都会修改,基本就没有再深入分析源码的意义了. ...

  4. Akka源码分析-Akka-Streams-概念入门

    今天我们来讲解akka-streams,这应该算akka框架下实现的一个很高级的工具.之前在学习akka streams的时候,我是觉得云里雾里的,感觉非常复杂,而且又难学,不过随着对akka源码的深 ...

  5. Akka源码分析-Cluster-Metrics

    一个应用软件维护的后期一定是要做监控,akka也不例外,它提供了集群模式下的度量扩展插件. 其实如果读者读过前面的系列文章的话,应该是能够自己写一个这样的监控工具的.简单来说就是创建一个actor,它 ...

  6. Akka源码分析-Cluster-Distributed Publish Subscribe in Cluster

    在ClusterClient源码分析中,我们知道,他是依托于“Distributed Publish Subscribe in Cluster”来实现消息的转发的,那本文就来分析一下Pub/Sub是如 ...

  7. Akka源码分析-local-DeathWatch

    生命周期监控,也就是死亡监控,是akka编程中常用的机制.比如我们有了某个actor的ActorRef之后,希望在该actor死亡之后收到响应的消息,此时我们就可以使用watch函数达到这一目的. c ...

  8. Akka源码分析-Cluster-ActorSystem

    前面几篇博客,我们依次介绍了local和remote的一些内容,其实再分析cluster就会简单很多,后面关于cluster的源码分析,能够省略的地方,就不再贴源码而是一句话带过了,如果有不理解的地方 ...

  9. Akka源码分析-CircuitBreaker(熔断器)

    熔断器,在很多技术栈中都会出现的一种技术.它是在分布式系统中提供一个稳定的阻止嵌套失败的机制. 该怎么理解呢?简单来说,在分布式环境中,如果某个计算节点出现问题,很容易出现失败的逆向传到或整个系统的雪 ...

随机推荐

  1. Re0:DP学习之路 饭卡 HDU - 2546

    解法 01背包变式,首先贪心的想一下如果要保证余额最小那么就需要用相减后最小的钱减去之前最大的价格,且得保证这个钱在5元以上 对于寻找如何减最多能包含在5元以上,这里用01背包 我们把价钱看做体积装进 ...

  2. MySQL练习题及答案(复习)

    新建一个叫做 review 的数据库,将测试数据脚本导进去.(可以使用Navicat查询功能) /* Navicat MySQL Data Transfer Source Server : DB So ...

  3. codechef营养题 第二弹

    第二弾が始まる! codechef problems 第二弹 一.Backup Functions 题面 One unavoidable problem with running a restaura ...

  4. phpcms 搭建宣传网站首页

    1 .修改后台提交的表单信息展示: 文件路径: phpcms\modules\formguide\template\formguide_info_list.tpl.php function getQu ...

  5. HTML5中Canvas概述

    一.HTML5 Canvas历史 Canvas的概念最初是由苹果公司提出的,用于在Mac OS X WebKit中创建控制板部件(dashboard widget).在Canvas出现之前,开发人员若 ...

  6. 如何创建新用户和授予MySQL中的权限

    原创官网http://www.howtoing.com/how-to-create-a-new-user-and-grant-permissions-in-mysql/ 关于MySQL MySQL是一 ...

  7. mySQL and sqoop for ubuntu

    数据的导入导出 ——MySQL & sqoop in Ubuntu 1.完成搭建hadoop集群 2.安装MySQL sudo apt-get install mysql-server mys ...

  8. [K/3Cloud]如何解决kdpkg无法部署到业务站点的问题

    自从下载了sp1后,就迫不急待的试用下,看看反馈的几个关键bug是否修复,可惜sp1安装后发现业务站点下的组件一个都没有被更新,这指定是有问题了,这真是让哥百思不得其解,真后悔在研发时没仔细研究下部署 ...

  9. 食物链 2001年NOI全国竞赛

    时间限制: 3 s 空间限制: 64000 KB 题目等级 : 钻石 Diamond   题目描述 Description 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A吃B ...

  10. kafka streams

    https://docs.confluent.io/current/streams/concepts.html#ktable