此文已由作者温正湖授权网易云社区发布。

欢迎访问网易云社区,了解更多网易技术产品运营经验。

这是一篇MongoDB官网上的一篇文章,分析了使用MongoDB存储商品分类信息相比其他数据库的优势,并讲述了如何将其保存到MongoDB中。原址点击:User case – Product Catalog。MongoDB中文社区有大神已将其翻译成中文。在此不重复造车,直接转载。欢迎一起探讨。

关系型数据库解决方案

上述问题使用传统的关系型数据库也可以解决,比如以下几种方案

针对不同商品,创建不同的表

比如音乐专辑、电影这2种商品,有一部分共同的属性,但也有很多自身特有的属性,可以创建2个不同的表,拥有不同的schema。

CREATE TABLE `product_audio_album` (
    `sku` char(8) NOT NULL,
    ...
    `artist` varchar(255) DEFAULT NULL,
    `genre_0` varchar(255) DEFAULT NULL,
    `genre_1` varchar(255) DEFAULT NULL,
    ...,
    PRIMARY KEY(`sku`))
...
CREATE TABLE `product_film` (
    `sku` char(8) NOT NULL,
    ...
    `title` varchar(255) DEFAULT NULL,
    `rating` char(8) DEFAULT NULL,
    ...,
    PRIMARY KEY(`sku`))
...

这种做法的主要问题在于

  • 针对每个新的商品分类,都需要创建新的表

  • 应用程序开发者必须显式的将请求分发到对应的表上来查询,一次查询多种商品实现起来比较麻烦

所有商品存储到单张表

CREATE TABLE `product` (
    `sku` char(8) NOT NULL,
    ...
    `artist` varchar(255) DEFAULT NULL,
    `genre_0` varchar(255) DEFAULT NULL,
    `genre_1` varchar(255) DEFAULT NULL,
    ...
    `title` varchar(255) DEFAULT NULL,
    `rating` char(8) DEFAULT NULL,
    ...,    PRIMARY KEY(`sku`))

将所有的商品存储到一张表,这张表包含所有商品需要的属性,不同的商品根据需要设置不同的属性,这种方法使得商品查询比较简单,并且允许一个查询跨多种商品,但缺点是浪费的空间比较多。

提取公共属性,多表继承

CREATE TABLE `product` (
    `sku` char(8) NOT NULL,
    `title` varchar(255) DEFAULT NULL,
    `description` varchar(255) DEFAULT NULL,
    `price`, ...
    PRIMARY KEY(`sku`)) CREATE TABLE `product_audio_album` (
    `sku` char(8) NOT NULL,
    ...
    `artist` varchar(255) DEFAULT NULL,
    `genre_0` varchar(255) DEFAULT NULL,
    `genre_1` varchar(255) DEFAULT NULL,
    ...,
    PRIMARY KEY(`sku`),
    FOREIGN KEY(`sku`) REFERENCES `product`(`sku`))
...
CREATE TABLE `product_film` (
    `sku` char(8) NOT NULL,
    ...
    `title` varchar(255) DEFAULT NULL,
    `rating` char(8) DEFAULT NULL,
    ...,
    PRIMARY KEY(`sku`),
    FOREIGN KEY(`sku`) REFERENCES `product`(`sku`))
...

上述方案将所有商品公共的属性提取出来,将公共属性存储到一张表里,每种商品根据自身的需要创建新的表,新表里只存储该商品特有的信息。

Entity Attribute Values 形式存储

所有的数据按照 的3元组的形式存储,这个方案实际上是把关系型数据库当KV存储使用,模型简单,但应对复杂的查询不是很方便。

ENTITY ATTRIBUTE VALUES
sku_00e8da9b type Audio Album
sku_00e8da9b title A Love Supreme
sku_00e8da9b
sku_00e8da9b artist John Coltrane
sku_00e8da9b genre Jazz
sku_00e8da9b genre General

MongoDB 解决方案

MognoDB 与关系型数据库不同,其无schema,文档内容可以非常灵活的定制,能很好的使用上述商品分类存储的需求; 将商品信息存储在一个集合里,集合里不同的商品可以自定义文档内容。

比如一个音乐专辑可以类似如下的文档结构

{
  sku: "00e8da9b",
  type: "Audio Album",
  title: "A Love Supreme",
  description: "by John Coltrane",
  asin: "B0000A118M",   shipping: {
    weight: 6,
    dimensions: {
      width: 10,
      height: 10,
      depth: 1
    },
  },   pricing: {
    list: 1200,
    retail: 1100,
    savings: 100,
    pct_savings: 8
  },   details: {
    title: "A Love Supreme [Original Recording Reissued]",
    artist: "John Coltrane",
    genre: [ "Jazz", "General" ],
        ...
    tracks: [
      "A Love Supreme Part I: Acknowledgement",
      "A Love Supreme Part II - Resolution",
      "A Love Supreme, Part III: Pursuance",
      "A Love Supreme, Part IV-Psalm"
    ],
  },
}

而一部电影则可以存储为

{
  sku: "00e8da9d",
  type: "Film",
  ...,
  asin: "B000P0J0AQ",   shipping: { ... },   pricing: { ... },   details: {
    title: "The Matrix",
    director: [ "Andy Wachowski", "Larry Wachowski" ],
    writer: [ "Andy Wachowski", "Larry Wachowski" ],
    ...,
    aspect_ratio: "1.66:1"
  },
}

所有商品都拥有一些共同的基本信息,特定的商品可以根据需要扩展独有的内容,非常方便; 基于上述模型,MongoDB 也能很好的服务各类查询。

查询某个演员参演的所有电影,并按发型日志排序

db.products.find({'type': 'Film', 'details.actor': 'Keanu Reeves'}).sort({'details.issue_date', -1})

上述查询也可以通过建立索引来加速

db.products.createIndex({ type: 1, 'details.actor': 1, 'details.issue_date': -1 })

查询标题里包含特定信息的所有电影

db.products.find({
    'type': 'Film',
    'title': {'$regex': '.*hacker.*', '$options':'i'}}).sort({'details.issue_date', -1})

可建立如下索引来加速查询

db.products.createIndex({ type: 1, details.issue_date: -1, title: 1 })

扩展

当单个节点无法满足海量商品信息存储的需求时,就需要使用MongoDB sharding来扩展,假定大量的查询都是都会基于商品类型,那么就可以使用商品类型字段来进行分片。

db.shardCollection('products', { key: {type: 1} })

分片时,尽量使用复合的索引字段,这样能满足更多的查询需求,比如基于商品类型之后,还会经常根据商品的风格标签来查询,则可以把商品的标签字段作为第二分片key。

db.shardCollection('products', { key: {type: 1, 'details.genre': 1} })

如果某种类型的商品,拥有相同标签的特别多,则会出现jumbo chunk的问题,导致无法迁移,可以进一步的优化分片key,以避免这种情况。

db.shardCollection('products', { key: {type: 1, 'details.genre': 1, sku: 1} })

加入第3分片key之后,即使类型、风格标签都相同,但其sku信息肯定不同,就肯定不会出现超大的chunk。

网易云MongoDB 服务为开发者提供了一站式的 MongoDB 云端解决方案,包括提供三节点复制集的高可用架构,故障切换,并提供专业的备份、监控以及性能优化方案,彻底免除开发者的运维烦恼。点击可免费试用

网易云免费体验馆,0成本体验20+款云产品!

更多网易技术、产品、运营经验分享请点击

相关文章:
【推荐】 代码混淆防止APP被反编译指南
【推荐】 简单概括一下《金字塔原理》的主要内容?
【推荐】 分布式存储系统可靠性系列二:系统估算示例

使用 MongoDB 存储商品分类信息的更多相关文章

  1. Mongodb 存储日志信息

    线上运行的服务会产生大量的运行及访问日志,日志里会包含一些错误.警告.及用户行为等信息,通常服务会以文本的形式记录日志信息,这样可读性强,方便于日常定位问题,但当产生大量的日志之后,要想从大量日志里挖 ...

  2. MongoDB 存储引擎和数据模型设计

    标签: MongoDB NoSQL MongoDB 存储引擎和数据模型设计 1. 存储引擎 1.1 存储引擎是什么 1.2 MongoDB中的默认存储引擎 2. 数据模型设计 2.1 内嵌和引用 2. ...

  3. Asp.Net Core Web Api图片上传(一)集成MongoDB存储实例教程

    Asp.Net Core Web Api图片上传及MongoDB存储实例教程(一) 图片或者文件上传相信大家在开发中应该都会用到吧,有的时候还要对图片生成缩略图.那么如何在Asp.Net Core W ...

  4. 使用 MongoDB 存储日志数据

    使用 MongoDB 存储日志数据     线上运行的服务会产生大量的运行及访问日志,日志里会包含一些错误.警告.及用户行为等信息.通常服务会以文本的形式记录日志信息,这样可读性强,方便于日常定位问题 ...

  5. MongoDB存储引擎选择

    MongoDB存储引擎选择 MongoDB存储引擎构架 插件式存储引擎, MongoDB 3.0引入了插件式存储引擎API,为第三方的存储引擎厂商加入MongoDB提供了方便,这一变化无疑参考了MyS ...

  6. MongoDB 存储日志数据

    MongoDB 存储日志数据 https://www.cnblogs.com/nongchaoer/archive/2017/01/11/6274242.html 线上运行的服务会产生大量的运行及访问 ...

  7. MongoDB学习笔记(五、MongoDB存储引擎与索引)

    目录: mongoDB存储引擎 mongoDB索引 索引的属性 MongoDB查询优化 mongoDB存储引擎: 目前mongoDB的存储引擎分为三种: 1.WiredTiger存储引擎: a.Con ...

  8. MongoDB 存储引擎选择

    MongoDB存储引擎选择 MongoDB存储引擎构架 插件式存储引擎, MongoDB 3.0引入了插件式存储引擎API,为第三方的存储引擎厂商加入MongoDB提供了方便,这一变化无疑参考了MyS ...

  9. SharedPreferences漏洞, 无法避免,所以不要在里面存储敏感信息

     1. SharedPreferences漏洞, 无法避免,所以不要在里面存储敏感信息2. 数据存储检测,content://com.starcor.launcherInfo/deviceInfo&q ...

随机推荐

  1. Codeforces 954 D Fight Against Traffic

    Discription Little town Nsk consists of n junctions connected by m bidirectional roads. Each road co ...

  2. hdu6196 happpy happy happy (meet in middle + 剪枝)

    题意 从1到n共计n(<=90)个物品,每个物品有一个价值a[i],儿子和爸爸轮流做游戏,儿子先手.儿子每次选价值最大的{最左边,最右边}的物品,如果价值一样大, 则选取最左边的物品. 爸爸每次 ...

  3. maven 新建项目时修改默认jre路径

    新建maven项目时,JRE System Library默认为J2SE-1.5 如果想修改为1.7,修改maven的settings.xml ,在profiles中添加 <profile> ...

  4. Java的发送邮件

    以下内容引用自http://wiki.jikexueyuan.com/project/java/sending-email.html: 用Java应用程序来发送一封电子邮件是足够简单的,但是开始时应该 ...

  5. Spring中使用存储过程

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/jdbc-framework-overview/sql-stored-procedure-in-sp ...

  6. Eclipse移植项目时JDK版本不匹配Project facet Java version 1.7 is not supported

    Eclipse移植项目时JDK版本不匹配Project facet Java version 1.7 is not supported 如果原有项目用的为JDK1.7,而自己的是低版本JDK,比如1. ...

  7. Bound mismatch: The typae CertificateDirectory is not a valid substitute for the bounded parameter <M extends Serializable>

    这是因为架包没导对或者关联的项目不是在同一个工作空间.

  8. AFNetworking配合Swift3.0请求数据

    首先用桥接或pods将AFNetworking导入项目,在这不再赘述,然后创建一个单例NetWorkTools.swift 继承:AFHTTPSessionManager import UIKit i ...

  9. 剑指Offer面试题43(Java版):n个骰子的点数

    题目:把n个骰子仍在地上.全部骰子朝上一面的点数之和为s,输入n,打印出s的全部可能的值出现的概率. 解法一:基于递归求骰子的点数,时间效率不够高 如今我们考虑怎样统计每个点数出现的次数. 要向求出n ...

  10. ./configure && make && make install详解 (转)

    在Linux中利用源码包安装软件最重要的就是要仔细阅读安装包当中的README INSTALL两个说明文件,这两个文件会清楚的告诉你如何可以正确的完成这个软件的安装! 我们都知道源码包安装分为这么几个 ...