And Then There Was One
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 4873   Accepted: 2598

Description

Let’s play a stone removing game.

Initially, n stones are arranged on a circle and numbered 1, …, n clockwise (Figure 1). You are also given two numbers k and m. From this state, remove stones one by one following the rules explained below, until only one remains. In step 1, remove stone m. In step 2, locate the k-th next stone clockwise from m and remove it. In subsequent steps, start from the slot of the stone removed in the last step, make k hops clockwise on the remaining stones and remove the one you reach. In other words, skip (k − 1) remaining stones clockwise and remove the next one. Repeat this until only one stone is left and answer its number. For example, the answer for the case n = 8, k = 5, m = 3 is 1, as shown in Figure 1.


Initial state

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Final state
 

Figure 1: An example game

Initial state: Eight stones are arranged on a circle.

Step 1: Stone 3 is removed since m = 3.

Step 2: You start from the slot that was occupied by stone 3. You skip four stones 4, 5, 6 and 7 (since k = 5), and remove the next one, which is 8.

Step 3:
You skip stones 1, 2, 4 and 5, and thus remove 6. Note that you only
count stones that are still on the circle and ignore those already
removed. Stone 3 is ignored in this case.

Steps 4–7:
You continue until only one stone is left. Notice that in later steps
when only a few stones remain, the same stone may be skipped multiple
times. For example, stones 1 and 4 are skipped twice in step 7.

Final State: Finally, only one stone, 1, is on the circle. This is the final state, so the answer is 1.

Input

The input consists of multiple datasets each of which is formatted as follows.

n k m

The
last dataset is followed by a line containing three zeros. Numbers in a
line are separated by a single space. A dataset satisfies the following
conditions.

2 ≤ n ≤ 10000, 1 ≤ k ≤ 10000, 1 ≤ mn

The number of datasets is less than 100.

Output

For
each dataset, output a line containing the stone number left in the
final state. No extra characters such as spaces should appear in the
output.

Sample Input

8 5 3
100 9999 98
10000 10000 10000
0 0 0

Sample Output

1
93
2019

Source

题目描述 : n个数排成一圈,第一次删除,以后每数k个数删除一次。求最后一次被删除的数。
假设数字标号为0,1,2,3,,,n-1,。第一次删除的数是k,那么还剩0,1,2,3,,,k-1,k+1,k+2,,,,n-1;
那么问题就转化为求这n-1个数,最后一次被删除的数?,最优子结构,定义状态f[n]代表对n个数进行操作,最后一次被删除的数。
我们需要重新对这n-1个数重新编号,k+1,k+2,k+3,,,n-1,0,1,2,3,4, ,,k-1,重新编号为,0,1,2,3,4,5,,,,n-1.
f[n]与f[n-1]有什么关系呢?f[n]=(f[n-1]+k)%n;因为只是重新编号,所以我们只需将n-1个数所求的最后一个数的序号转化为n个数要求的最后一个数的序号.
题目要求第一次删除的是m,那么我们考虑-k+1,开始数k个数,那么第一次删除的就是0号元素,而且如果0号元素是m的话,那么f[n]号元素就为f[n]+m.
int answer=(m-k+1+f[n])%n;
if(answer<=0)
answer+=n;
不能写成(answer+n)%n,因为answer==0,n%n==0.
#include <iostream>
#include <cstdio>
//#include <strng>
#include <cstring>
using namespace std; int n,m,k;
int f[];
void init()
{
memset(f,,sizeof(f));
} void solve()
{ for(int i=;i<=n;i++)
f[i]=(f[i-]+k) % i;
int answer;
answer=(m-k++f[n]) % n;
if(answer<=)
answer=(answer+n)%n; //不能这么写,如果answer==0,答案就为0了
printf("%d\n",answer); } int main()
{ // freopen("test.txt","r",stdin);
while(~scanf("%d%d%d",&n,&k,&m))
{
if(n== && m== && k==)
break;
init();
solve();
} return ;
}
 

poj 3517(约瑟夫环问题)的更多相关文章

  1. Joseph POJ - 1012 约瑟夫环递推

    题意:约瑟夫环  初始前k个人后k个人  问m等于多少的时候 后k个先出去 题解:因为前k个位置是不动的,所以只要考虑每次递推后的位置在不在前面k个就行 有递推式 ans[i]=(ans[i-1]+m ...

  2. (顺序表的应用5.4.3)POJ 1012(约瑟夫环问题——保证前k个出队元素为后k个元素)

    /* * POJ-1012.cpp * * Created on: 2013年10月31日 * Author: Administrator */ #include <iostream> # ...

  3. Poj 3517 And Then There Was One(约瑟夫环变形)

    简单说一下约瑟夫环:约瑟夫环是一个数学的应用问题:已知n个人(以编号1,2,3...n分别表示)围坐在一张圆桌周围.从编号为k的人开始报数,数到m的那个人出列:他的下一个人又从1开始报数,数到m的那个 ...

  4. POJ 3517 And Then There Was One( 约瑟夫环模板 )

    链接:传送门 题意:典型约瑟夫环问题 约瑟夫环模板题:n个人( 编号 1-n )在一个圆上,先去掉第m个人,然后从m+1开始报1,报到k的人退出,剩下的人继续从1开始报数,求最后剩的人编号 /**** ...

  5. POJ 2359 Questions(约瑟夫环——数学解法)

    题目链接: http://poj.org/problem?id=2359 题意描述: 输入一个字符串 按照下面的规则,如果剩下的最后一个字符是'?',输出"Yes",如果剩下的最后 ...

  6. poj 1012 &amp; hdu 1443 Joseph(约瑟夫环变形)

    题目链接: POJ  1012: id=1012">http://poj.org/problem?id=1012 HDU 1443: pid=1443">http:// ...

  7. POJ 2886 Who Gets the Most Candies?(线段树&#183;约瑟夫环)

    题意  n个人顺时针围成一圈玩约瑟夫游戏  每一个人手上有一个数val[i]   開始第k个人出队  若val[k] < 0 下一个出队的为在剩余的人中向右数 -val[k]个人   val[k ...

  8. poj 3517

    题目链接  http://poj.org/problem?id=3517 题意        约瑟夫环  要求最后删掉的那个人是谁: 方法        理解递推公式就行了  考虑这样一组数据  k ...

  9. UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There Was One / POJ 3517 And Then There Was One / Aizu 1275 And Then There Was One (动态规划,思维题)

    UVA 1394 And Then There Was One / Gym 101415A And Then There Was One / UVAlive 3882 And Then There W ...

随机推荐

  1. MyBatis使用Mapper动态代理开发Dao层

    开发规范 Mapper接口开发方法只需要程序员编写Mapper接口(相当于Dao接口),由Mybatis框架根据接口定义创建接口的动态代理对象,代理对象的方法体同原始Dao接口实现类方法. Mappe ...

  2. 两行代码快速创建一个iOS主流UI框架

    本框架适用于 使用 NavigationController+UITabBarController 的APP 框架QLSNavTab , GitHub地址:https://github.com/qia ...

  3. codeforces 1041 d 二分

    题意转化:有一些区间,要求选一些连续的区间.两两区间间隔的和要求小于H.要求区间的长度和尽可能长. 二分区间长度的和,check一下就行 #include <bits/stdc++.h> ...

  4. Codeforces Manthan, Codefest 18 (rated, Div. 1 + Div. 2) D,E

    D. Valid BFS? time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  5. HDU 6437 最(大) 小费用最大流

    Problem L.Videos Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Other ...

  6. ubuntu-12.04下安装postgresql

    2013-10-01 20:42:57|    moniter参考资料:Ubuntu 12.04下PostgreSQL-9.1安装与配置详解(在线安装)一.安装postgresqlbamboo@bam ...

  7. 在d盘中创建一个文件夹 在文件夹里创建三个txt文本

    import java.io.File; import java.io.IOException; public class FileDemo { public static void main(Str ...

  8. Java的基本运算符

    以下内容引用自http://wiki.jikexueyuan.com/project/java/basic-operators.html: Java针对操控变量提供了一组丰富的运算符.可以将所有的Ja ...

  9. 关于MSSQL的decimal(numeric)、money、float的使用以及区别

    decimal(numeric).money.float(real) 都是MSSQL中的浮点类型的数据类型. 按存储的范围进行排序 float(real) decimal(numeric) money ...

  10. kvm虚拟化学习笔记(一)之kvm虚拟化环境安装

    平时一直玩RHEL/CentOS/OEL系列的操作,玩虚拟化也是采这一类系统,kvm在RHEL6系列操作系统支持比较好,本文采用采用OEL6.3操作系统,网上所有文章都说KVM比xen简单,我怎么感觉 ...