简介
在python的解释器中,CPython是应用范围最广的一种,其具有丰富的扩展包,方便了开发者的使用。当然CPython也不是完美的,由于全局解释锁(GIL)的存在,python的多线程可以近似看作单线程。为此,开发者推出了multiprocessing,这里介绍一下使用中的常见问题。

环境
>>> import sys
>>> print(sys.version)
3.6.0 |Anaconda 4.3.1 (64-bit)| (default, Dec 23 2016, 12:22:00) \n[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]
1
2
3
共享变量
任务能否切分成多个子任务是判断一个任务能否使用多进程或多线程的重要标准。在任务切分时,不可避免的需要数据通讯,而共享变量是数据通讯的重要方式。在multiprocess中,共享变量有两种方式:Shared memory和Server process。

share memory
multiprocess通过Array和Value来共享内存

from multiprocessing import Array, Value
num = 10
elements = Array("i", [2 * i + 1 for i in range(num)])
val = Value('d', 0.0)
1
2
3
4
然后就可以将数据同步到Process中。这里举一个例子,即将elements翻倍,val增加1,首先定义函数

def func(elements, val):
for i, ele in enumerate(elements):
elements[i] = ele * 2
val.value += 1
1
2
3
4
再定义Process

from multiprocessing import Process
p = Process(target=func, args=(elements, val, ))
p.start() # 运行Process
p.join() # 等待Process运行结束
1
2
3
4
最终运行结果

=====Process运行前=======
[elements]:1 3 5 7 9 11 13 15 17 19
[Value]:0.0
=====Process运行后=======
[elements]:2 6 10 14 18 22 26 30 34 38
[Value]:1.0
1
2
3
4
5
6
在某些特定的场景下要共享string类型,方式如下:

from ctypes import c_char_p
str_val = Value(c_char_p, b"Hello World")
1
2
关于Share Memory支持的更多类型,可以查看module-multiprocessing.sharedctypes。

Server process
此种方式通过创建一个Server process来管理python object,然后其他process通过代理来访问这些python object。相较于share memory,它支持任意类型的共享,包括:list、dict、Namespace等。这里以dict和list举一个例子:

from multiprocessing import Process, Manager

def func(d, l):
d[1] = '1'
d['2'] = 2
d[0.25] = None
l.reverse()

if __name__ == '__main__':
with Manager() as manager:
d = manager.dict()
l = manager.list(range(10))
print("=====Process运行前=======")
print(d)
print(l)

p = Process(target=func, args=(d, l))
p.start()
p.join()

print("=====Process运行后=======")
print(d)
print(l)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
运行结果如下

=====Process运行前=======
{}
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
=====Process运行后=======
{1: '1', '2': 2, 0.25: None}
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
1
2
3
4
5
6
进程间通讯
众所周知,并发编程中应该尽量避免共享变量,多进程更是如此。在这种情况下,多进程间的通讯就要用到Queue和Pipe。

Queue
Queue是一种线程、进程安全的先进先出的队列。使用中,首先定义Queue

from multiprocessing import Queue
queue = Queue()
1
2
然后将需要处理的数据放入Queue中

elements = [i for i in range(100)]
for i in elements:
queue.put(i)
1
2
3
然后创建子进程process

from multiprocessing import Process
process = Process(target=func, args=(queue, ))
1
2
其中func是子进程处理数据的逻辑。

from queue import Empty
def func(queue):
buff = []
while True:
try:
ele = queue.get(block=True, timeout=1)
buff.append(str(ele))
except Empty:
print(" ".join(buff))
print("Queue has been empty.....")
break
1
2
3
4
5
6
7
8
9
10
11
使用queue.get时,若Queue中没有数据,则会抛出queue.Empty错误。值得注意的是,在使用queue.get()时一定要设置block=True和timeout,否则它会一直等待,直到queue中放入数据(刚开始用的时候,我一直奇怪为什么程序一直处在等待状态)。运行结果

=====单进程======
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
Queue has been empty.....
1
2
3
Pipe
Pipe是一种管道,一端输入,一端输出。在multiprocess中,可以通过Pipe()函数来定义,返回send和recv的connection。使用中,先定义

from multiprocessing import Pipe
parent_conn, child_conn = Pipe()
1
2
然后一端放入数据,另一端就可以接受数据了

from multiprocessing import Process
def f(conn):
conn.send([42, None, 'hello'])
conn.close()
p = Process(target=f, args=(child_conn,))
p.start()
print(parent_conn.recv())
p.join()
1
2
3
4
5
6
7
8
输出结果

[42, None, 'hello']
1
另外,值得注意的是,若两个或更多进程同时从管道一端读或写数据,会导致管道中的数据corrupt。为了直观的理解这种情况,这里举一个例子,即在主进程将数据放入管道,在子进程从管道中读出数据,并打印结果。区别之处在于,子进程的数量。首先将数据放入管道:

def func(conn):
a = conn.recv()
print(a)
parent, child = Pipe()
child.send("Hello world...")
1
2
3
4
5
然后开启子进程

print("======单进程========")
p = Process(target=func, args=(parent, ))
p.start()
p.join()
print("======多进程========")
num_process = 2
ps = [Process(target=func, args=(parent, )) for _ in range(num_process)]
for p in ps:
p.start()
for p in ps:
p.join()
1
2
3
4
5
6
7
8
9
10
11
输出结果

多进程并未按照预想的输出两个Hello World,而是处于死锁的状态。

例子
关于Queue和Pipe的用法讲了这么多,下面做一个小练习,内容是:利用多线程从文件中读取数据,处理后将数据保存到另外一个文件中。具体方法如下:
1. 开辟一个子进程,从文件中读取数据,并将数据存入Queue中
2. 开辟多个子进程,从Queue中读取数据,处理数据,并将数据放入管道一端(注意加锁)
3. 开辟一个子进程,从管道另一端获取数据,并将数据写入文件中

0.导包

from multiprocessing import Process, Array, Queue, Value, Pipe, Lock
from queue import Empty
import sys
1
2
3
1.读取数据

def read_file(fin, work_queue):
for line in fin:
i = int(line.strip("\n"))
work_queue.put_nowait(i)
1
2
3
4
其中work_queue用于连通“读数据的进程”和“处理数据的进程”。

2.处理数据

def worker_func(work_queue, conn, lock, index):
while True:
try:
ele = work_queue.get(block=True, timeout=0.5) + 1
with lock:
conn.send(ele)
except Empty:
print("Process-{} finish...".format(index))
conn.send(-1)
break
1
2
3
4
5
6
7
8
9
10
从队列中读取数据,直到队列中的数据全被取走。当Queue中不存在数据时,向queue放入终止符(-1),告诉后面的进程,前面的人任务已经完成。

3.写数据

def write_file(conn, fout, num_workers):
record = 0
while True:
val = conn.recv()
if val == -1:
record += 1
else:
print(val, file=fout)
fout.flush()
if record == num_workers:
break
1
2
3
4
5
6
7
8
9
10
11
当写进程收到特定数量终止符(-1)时,写进程就终止了。

4.执行

path_file_read = "./raw_data.txt"
path_file_write = "./data.txt"

with open(path_file_read) as fin, \
open(path_file_write, "w") as fout:
queue = Queue()
parent, child = Pipe()
lock = Lock()
read_Process = Process(target=read_file, args=(fin, queue, ))
worker_Process = [Process(target=worker_func, args=(queue, parent, lock, index, ))
for index in range(3)]
write_Process = Process(
target=write_file, args=(child, fout, len(worker_Process), ))

read_Process.start()
for p in worker_Process:
p.start()
write_Process.start()
print("read....")
read_Process.join()
print("worker....")
for p in worker_Process:
p.join()
print("write....")
write_Process.join()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
输入/输出
打印错行
在使用多进程中,你会发现打印的结果发生错行。这是因为python的print函数是线程不安全的,从而导致错行。解决方法也很简单,给print加一把锁就好了,方式如下

from multiprocessing import Process, Lock

def f(l, i):
l.acquire()
try:
print('hello world', i)
finally:
l.release()

if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()
1
2
3
4
5
6
7
8
9
10
11
12
13
无法打印日志信息
刚开始用多进程时,经常会出现日志信息无法打印的情况。其实问题很简单。在多进程中,打印内容会存在缓存中,直到达到一定数量才会打印。解决这个问题,只需要加上

import sys
sys.stdout.flush()
sys.stderr.flush()
1
2
3
例如上面的例子,应该写成

import sys

def f(l, i):
l.acquire()
try:
print('hello world', i)
sys.stdout.flush() # 加入flush
finally:
l.release()
1
2
3
4
5
6
7
8
9
总结
以上就是我在使用multiprocessing遇到的问题。
---------------------
作者:cptu
来源:CSDN
原文:https://blog.csdn.net/AckClinkz/article/details/78457045
版权声明:本文为博主原创文章,转载请附上博文链接!

python(二):使用multiprocessing中的常见问题的更多相关文章

  1. Python多进程库multiprocessing中进程池Pool类的使用[转]

    from:http://blog.csdn.net/jinping_shi/article/details/52433867 Python多进程库multiprocessing中进程池Pool类的使用 ...

  2. 使用multiprocessing中的常见问题

    在python的解释器中,CPython是应用范围最广的一种,其具有丰富的扩展包,方便了开发者的使用.当然CPython也不是完美的,由于全局解释锁(GIL)的存在,python的多线程可以近似看作单 ...

  3. Python多进程库multiprocessing中进程池Pool类的使用

    问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似ba ...

  4. python学习笔记——multiprocessing 多进程组件 进程池Pool

    1 进程池Pool基本概述 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量时间,如果操作的对象数目不大时,还可以直接适用Process类动态生成 ...

  5. PYTHON练习题 二. 使用random中的randint函数随机生成一个1~100之间的预设整数让用户键盘输入所猜的数。

    Python 练习 标签: Python Python练习题 Python知识点 二. 使用random中的randint函数随机生成一个1~100之间的预设整数让用户键盘输入所猜的数,如果大于预设的 ...

  6. 二维数组中的查找[by Python]

    题目:在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...

  7. 二维数组中的查找(C++和Python实现)

    (说明:本博客中的题目.题目详细说明及参考代码均摘自 “何海涛<剑指Offer:名企面试官精讲典型编程题>2012年”) 题目 在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列 ...

  8. 【剑指Offer】04. 二维数组中的查找 解题报告(Java & Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 日期 题目地址:https://leetcode-cn.com/ ...

  9. 二维数组中的查找(python)

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

随机推荐

  1. HDU 5676 ztr loves lucky numbers【DFS】

    题目链接; http://acm.hdu.edu.cn/showproblem.php?pid=5676 题意: 由4和7组成的且4和7出现次数相同的数称为幸运数字,给定n,求不大于n的最大幸运数字. ...

  2. 【Java】NIO中Selector的select方法源码分析

    该篇博客的有些内容和在之前介绍过了,在这里再次涉及到的就不详细说了,如果有不理解请看[Java]NIO中Channel的注册源码分析, [Java]NIO中Selector的创建源码分析 Select ...

  3. 2019年北航OO第3单元(JML)总结

    1 JML语言的理论基础及应用工具链 1.1 JML语言 Java建模语言(JML)是一种行为接口规范语言,可用于指定Java模块的行为.它结合了Eiffel的"契约设计(design by ...

  4. spring boot 文件上传大小配置

    在启动类中,添加bean import javax.servlet.MultipartConfigElement; import org.springframework.boot.SpringAppl ...

  5. WebGIS开发之用openlayers加载离线百度地图

    因为项目需要,只有内网环境,没有外网环境,所以需要下载地图瓦片. 一.下载瓦片地图 这个可以自行在网上找一些地图瓦片下载器,下好的瓦片地图是分级的.大概如图这种类型. 二.在地图上显示标记 首先使用o ...

  6. ubuntu compile php from source code

    10down vote Assuming that you already have the OpenSSL libraries and header files (on rpm systems th ...

  7. JBoss 6.1安装配置问题

    一,配置环境变量 JBOSS_HOME:配置到解压文件的根文件夹下: classpath跟JAVA_HOME:配置的解压文件夹\bin文件夹以下: 二,訪问端口号 因为我之前安装过Tomcat,所以占 ...

  8. 线段树区间更新,区间统计+离散化 POJ 2528 Mayor&#39;s posters

    题意:有一个非常长的板子(10000000长),在上面贴n(n<=10000)张海报.问最后从外面能看到几张不同的海报. 由于板子有10000000长,直接建树肯定会爆,所以须要离散化处理,对于 ...

  9. Golang之bytes.buffer

    bytes.buffer是一个缓冲byte类型的缓冲器存放着都是byte Buffer 是 bytes 包中的一个 type Buffer struct{-} A buffer is a variab ...

  10. java zip压缩文件和文件夹

    public class FileUtil { /** * 压缩文件-File * @param out zip流 * @param srcFiles 要压缩的文件 * @param path 相对路 ...