C. 方格取数(1)

Time Limit: 5000ms
Memory Limit: 32768KB

64-bit integer IO format: %I64d      Java class name: Main

 
给你一个n*n的格子的棋盘,每个格子里面有一个非负数。
从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大。

 

Input

包括多个测试实例,每个测试实例包括一个整数n 和n*n个非负数(n<=20)

 

Output

对于每个测试实例,输出可能取得的最大的和

 

Sample Input

3
75 15 21
75 15 28
34 70 5

Sample Output

188

解题:有人用状态压缩dp做啊,我只能对着别人的代码敲了。。。。。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
int mp[maxn*maxn],tot,n,src,sink;
int c[maxn][maxn];
bool vis[maxn];
int dfs(int u,int low){
if(u == sink) return low;
if(vis[u]) return ;
vis[u] = true;
for(int v = ,flow; v <= sink; v++){
if(c[u][v] && (flow = dfs(v,min(low,c[u][v])))){
c[u][v] -= flow;
c[v][u] += flow;
return flow;
}
}
return ;
}
int maxFlow(){
int ans = ,flow;
memset(vis,false,sizeof(vis));
while(flow = dfs(src,INF)){
memset(vis,false,sizeof(vis));
ans += flow;
}
return ans;
}
int main(){
int i,j,temp;
while(~scanf("%d",&n)){
j = n*n;
src = tot = ;
sink = j+;
memset(mp,,sizeof(mp));
memset(c,,sizeof(c));
for(i = ; i <= j; i++){
scanf("%d",&temp);
tot += temp;
if(i <= n) mp[i] = !mp[i-];
else mp[i] = !mp[i-n];
if(mp[i]){
if(i%n) c[i][i+] = INF;//右边
if(i%n != ) c[i][i-] = INF;//左边
if(i <= n*(n-)) c[i][n+i] = INF;//下边
if(i > n) c[i][i-n] = INF;//上边
c[src][i] = temp;
}else c[i][sink] = temp;
}
printf("%d\n",tot-maxFlow());
}
return ;
}

XTU 二分图和网络流 练习题 C. 方格取数(1)的更多相关文章

  1. Cogs 734. [网络流24题] 方格取数问题(最大闭合子图)

    [网络流24题] 方格取数问题 ★★☆ 输入文件:grid.in 输出文件:grid.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 在一个有m*n 个方格的棋盘中,每个方格 ...

  2. AC日记——[网络流24题]方格取数问题 cogs 734

    734. [网络流24题] 方格取数问题 ★★☆   输入文件:grid.in   输出文件:grid.out   简单对比时间限制:1 s   内存限制:128 MB «问题描述: 在一个有m*n ...

  3. [网络流24题] 方格取数问题/骑士共存问题 (最大流->最大权闭合图)

    洛谷传送门 LOJ传送门 和太空飞行计划问题一样,这依然是一道最大权闭合图问题 “骑士共存问题”是“方格取数问题”的弱化版,本题解不再赘述“骑士共存问题”的做法 分析题目,如果我们能把所有方格的数都给 ...

  4. [网络流24题] 方格取数问题(cogs 734)

    «问题描述:在一个有m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.«编程任务:对于给定的方格棋 ...

  5. XTU 二分图和网络流 练习题 B. Uncle Tom's Inherited Land*

    B. Uncle Tom's Inherited Land* Time Limit: 1000ms Memory Limit: 32768KB 64-bit integer IO format: %I ...

  6. XTU 二分图和网络流 练习题 J. Drainage Ditches

    J. Drainage Ditches Time Limit: 1000ms Memory Limit: 32768KB 64-bit integer IO format: %I64d      Ja ...

  7. luogu2774 [网络流24题]方格取数问题 (最小割)

    常见套路:棋盘黑白染色,就变成了一张二分图 然后如果选了黑点,四周的白点就不能选了,也是最小割的套路.先把所有价值加起来,再减掉一个最少的不能选的价值,也就是割掉表示不选 建边(S,黑点i,v[i]) ...

  8. LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流

    #6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  9. P2774 方格取数问题 网络流

    题目: P2774 方格取数问题 题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

随机推荐

  1. JavaScript——数组的indexOf()方法在IE8中的兼容性问题

    昨天在工作中遇到一个问题:数组的indexOf()方法在IE8中无效. 如以下代码在IE8中报错“对象不支持“indexOf”属性或方法”: var arr = [1,2,3]; var index ...

  2. [转]合理使用ArrayMap代替HashMap

    合理使用ArrayMap代替HashMap 2016年07月08日 15:34:44 阅读数:5938 转载请标注: 披萨大叔的博客 http://blog.csdn.net/qq_27258799/ ...

  3. CF778B(round 402 div.2 E) Bitwise Formula

    题意: Bob recently read about bitwise operations used in computers: AND, OR and XOR. He have studied t ...

  4. (5)《Head First HTML与CSS》学习笔记---布局与定位

    层叠与CSS的权重判断 1.要理解层叠,除了前面的内容外还差最后一个知识点.你已经知道如何使用多个样式表来更好地组织你的样式,或者支持不同类型的设备.不过实际上用户访问你的页面时还有另外一些样式表. ...

  5. Linux PHP的运行模式

    关系图 首先聊一下服务器,常见的web server类型有apache和nginx Apache工作模式 Apache的工作模式是Apache服务器在系统启动后,预先生成多个进程副本驻留在内存中,一旦 ...

  6. MyBatis学习(三)

    前言 感觉学习进度还是比较慢啊,一整天的学习效率不是很高,一会看电视,一会喝茶,对自己的要求不严格...今天就说说关联表数据的插入以及别名的使用. 正文 1.关联插入 之前,我在数据库中已经创建了一张 ...

  7. 解决./mysql-bin.index’ not found (Errcode: 13)

    问题出现在升级php版本以后,网站无法连接数据库,phpMyAdmin无法登录: 然后尝试开启mysql,/etc/init.d/mysqld start ,提示: Starting MySQL. E ...

  8. 【译】OpenStack Heat基础介绍

    原文:http://blog.scottlowe.org/2014/05/01/an-introduction-to-openstack-heat/ 本文将简要地介绍OpenStack Heat. H ...

  9. c# sqlserver连接字符串

    odbc: string cnnstring = @"Driver={SQL Server Native Client 11.0};Initial Catalog = sxquadb;ser ...

  10. 算法之A星算法(寻路)

    1.启发式搜索:启发式搜索就是在状态空间中的搜索对每一个搜索的位置进行评估,得到最好的位置,再从这个位置进行搜索直到目标.这样可以省略大量无谓的搜索路径,提高了效率.在启发式搜索中,对位置的估价是十分 ...