Description

背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。
花神的题目是这样的
设 sum(i) 表示 i 的二进制表示中 1 的个数。给出一个正整数 N ,花神要问你
派(Sum(i)),也就是 sum(1)—sum(N) 的乘积。

Input

一个正整数 N。

Output

一个数,答案模 10000007 的值。

Sample Input

样例输入一


Sample Output

样例输出一


HINT

对于样例一,1*1*2=2;

数据范围与约定

对于 100% 的数据,N≤10^15

Solution

简单的数位dp,是论文的简化

一样,预处理出f[i][j]代表i长度的二进制数下有j个1的数的数量

求解具体数据先枚举1的数量,转移一下就行,之后用快速幂连乘

难点:费马小定理的应用,对于极大的f[i][j],由于它是指数,无法直接和md取模,

根据 a^phi(p)≡1(mod p),得出把f[i][j]和phi(10000007)=9988440取模就行了

#include<iostream>
#define ur 9988440
#define md 10000007
#define LL long long
LL n,ans=1LL,f[][],tim[];
void init() {
f[][]=1LL;
for(int i=; i<=; i++) {
f[i][]=f[i-][];
for(int j=; j<=i; j++)
f[i][j]=(f[i-][j-]+f[i-][j])%ur; } }
LL Q_pow(LL x,LL p) {
LL res=1LL;
for(; p; p>>=1LL) {
if(p&1LL)
res=(res*x)%md;
x=(x*x)%md; }
return res; }
void calc() {
int cnt=;
for(int i=; ~i; i--) {
if(n&(1LL<<i)) {
for(int j=cnt; j<=; j++)
tim[j]=(tim[j]+f[i][j-cnt])%ur;
cnt++; } } }
int main() {
init();
std::ios::sync_with_stdio(false);
std::cin>>n; n++; calc();
for(int i=; i<=; i++)
ans=(ans*Q_pow(i,tim[i]))%md;
std::cout<<ans<<std::endl;
return ; }

[bzoj3209][花神的数论题] (数位dp+费马小定理)的更多相关文章

  1. BZOJ3209: 花神的数论题(数位DP)

    题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...

  2. bzoj3209 花神的数论题——数位dp

    题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...

  3. 【BZOJ3209】花神的数论题 数位DP

    [BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...

  4. BZOJ 3209: 花神的数论题 [数位DP]

    3209: 花神的数论题 题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7 二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了 裸数位DP..\(f ...

  5. BZOJ 3209 花神的数论题 数位DP+数论

    题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...

  6. bzoj 3209 花神的数论题 —— 数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...

  7. 洛谷$ P$4317 花神的数论题 数位$dp$

    正解:数位$dp$ 解题报告: 传送门! 开始看到感觉有些新奇鸭,仔细一想发现还是个板子鸭,,, 考虑设$f_{i}$表示$sum[j]=i$的$j$的个数 日常考虑$dfs$呗,考虑变量要设哪些$Q ...

  8. 花神的数论题(数位dp)

    规定sum[i] 为i里面含1的个数 ,求从1-N sum[i]的乘积. 数为64位内的,也就是sum[i]<=64的,这样可以dp求出1-N中含k个1的数有多少个,快速幂一下就可以了. 有个地 ...

  9. BZOJ3209 花神的数论题 【组合数学+数位DP+快速幂】*

    BZOJ3209 花神的数论题 Description 背景 众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦. 描述 话说花神这天又来讲课了.课后照例有 ...

随机推荐

  1. FreeMarker:目录

    ylbtech-FreeMarker:目录 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:http://yl ...

  2. Maximum Gap 典型线性排序

    https://leetcode.com/problems/maximum-gap/ Given an unsorted array, find the maximum difference betw ...

  3. java笔记线程方式1等待终止

    public final void join():等待该线程终止 public class ThreadJoinDemo { public static void main(String[] args ...

  4. [App Store Connect帮助]三、管理 App 和版本(6.3)转让 App:接受 App 转让

    您必须在转让发起的 60 天内接受转让. 必要职能:“帐户持有人”职能.请参见职能权限. 以具有“帐户持有人”职能用户的身份登录至 App Store Connect. 系统会显示一条通知,指示 Ap ...

  5. GG_DataAccess 数据库访问层使用dapper操作

    3.5.GG_DataAccess 数据库访问层使用dapper操作 和Model实体类同理,tt模板已写好,需要的可加qq群:547765059  自己下载.

  6. less新手入门(一) 变量、extend扩展

    前景提要 个人在学习less时候的学习笔记及个人总结,主要是结合less中文网来学习的,但是说是中文网并不是中文呀,看起来很耽误时间,为了避免以后再次看的时候还要翻译思考,特意做此总结,方便以后查阅. ...

  7. [转]windows 7 下快速搭建php环境(windows7+IIS7+php+mysql)

    转贴:http://apps.hi.baidu.com/share/detail/10406992 (1).采用理由: 优点:最大化的桌面图形化操作系统,可维护性优秀.基于IIS v6.0/v7.0( ...

  8. 专题九:实现类似QQ的即时通信程序

    引言: 前面专题中介绍了UDP.TCP和P2P编程,并且通过一些小的示例来让大家更好的理解它们的工作原理以及怎样.Net类库去实现它们的.为了让大家更好的理解我们平常中常见的软件QQ的工作原理,所以在 ...

  9. 如何手工搭建本地Yum仓库

    如何手工搭建本地Yum仓库(重点推荐)  https://www.linuxidc.com/Linux/2016-09/135480.htm CentOS7.2 创建本地YUM源和局域网YUM源: h ...

  10. iOS基础笔试题 - 集锦一

    前言 下文转载自https://mp.weixin.qq.com/s?__biz=MzA4ODk0NjY4NA==&mid=454115946&idx=1&sn=c7f1b50 ...