BNUOJ 2528 Mayor's posters
Mayor's posters
This problem will be judged on UVA. Original ID: 10587
64-bit integer IO format: %lld Java class name: Main
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 ≤ n ≤ 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 ≤ i ≤ n, 1 ≤ li ≤ ri ≤ 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.
Sample input
1
5
1 4
2 6
8 10
3 4
7 10
Output for sample input
4 解题:线段树+离散化。挂了几次,居然还有贴在10-10这样位置的数据,简直太疯狂了。。这能贴么,一个点啊!好吧,改正后,终于Ac 了。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#include <map>
#define LL long long
#define pii pair<int,int>
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
set<int>st;
int a[maxn],b[maxn];
struct node{
int lt,rt,flag;
};
node tree[maxn<<];
int lisan[maxn<<];
void build(int lt,int rt,int v){
tree[v].lt = lt;
tree[v].rt = rt;
tree[v].flag = ;
if(lt + == rt) return;
int mid = (lt+rt)>>;
build(lt,mid,v<<);
build(mid,rt,v<<|);
}
void update(int lt,int rt,int v,int val){
if(lisan[tree[v].lt] == lt && lisan[tree[v].rt] == rt){
tree[v].flag = val;
return;
}
if(tree[v].flag){
tree[v<<].flag = tree[v<<|].flag = tree[v].flag;
tree[v].flag = ;
}
int mid = (tree[v].lt+tree[v].rt)>>;
if(rt <= lisan[mid]){
update(lt,rt,v<<,val);
}else if(lt >= lisan[mid]){
update(lt,rt,v<<|,val);
}else{
update(lt,lisan[mid],v<<,val);
update(lisan[mid],rt,v<<|,val);
}
}
void query(int v){
if(tree[v].flag){
if(!st.count(tree[v].flag)) st.insert(tree[v].flag);
return;
}
if(tree[v].lt+ == tree[v].rt) return;
query(v<<);
query(v<<|);
}
int main() {
int t,i,j,n,cnt,tot;
scanf("%d",&t);
while(t--){
tot = ;
scanf("%d",&n);
for(i = ; i <= n; i++){
scanf("%d %d",a+i,b+i);
if(a[i] > b[i]) swap(a[i],b[i]);
lisan[tot++] = a[i];
lisan[tot++] = ++b[i];
}
sort(lisan+,lisan+tot);
cnt = ;
for(i = ; i < tot; i++){
if(lisan[i] == lisan[cnt]) continue;
lisan[++cnt] = lisan[i];
}
build(,cnt,);
for(i = ; i <= n; i++) update(a[i],b[i],,i);
st.clear();
query();
printf("%d\n",st.size());
}
return ;
}
BNUOJ 2528 Mayor's posters的更多相关文章
- poj 2528 Mayor's posters(线段树+离散化)
/* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...
- poj 2528 Mayor's posters 线段树+离散化技巧
poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...
- POJ - 2528 Mayor's posters(dfs+分治)
POJ - 2528 Mayor's posters 思路:分治思想. 代码: #include<iostream> #include<cstdio> #include< ...
- POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)
POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...
- POJ 2528 Mayor's posters 【区间离散化+线段树区间更新&&查询变形】
任意门:http://poj.org/problem?id=2528 Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 59239 Accepted: 17157 ...
- POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】
Mayor's posters Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2528 Mayor's posters
Mayor's posters Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2528 Mayor's posters (线段树+离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions:75394 Accepted: 21747 ...
随机推荐
- bzoj 1664: [Usaco2006 Open]County Fair Events 参加节日庆祝【dp+树状数组】
把长度转成右端点,按右端点排升序,f[i]=max(f[j]&&r[j]<l[i]),因为r是有序的,所以可以直接二分出能转移的区间(1,w),然后用树状数组维护区间f的max, ...
- [Swift通天遁地]一、超级工具-(8)地图视图MKMapView的常用代理方法
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- 公司4:JrVue主题定制-2
页面折叠布局:(折叠按钮.transition动画.git项目池模块分支) 布局组件(template): <el-container> <el-aside> <!-- ...
- ROS-URDF仿真
前言:URDF (标准化机器人描述格式),是一种用于描述机器人及其部分结构.关节.自由度等的XML格式文件. 一.首先做一个带有四个轮子的机器人底座. 1.1 新建urdf文件 在chapter4_t ...
- hdu6198 number number number(递推公式黑科技)
number number number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- 暴力/思维 HDOJ 5386 Cover
题目传送门 /* 题意:给出刷墙的所有的方法,求一种顺序,使得原矩阵刷成目标矩阵 暴力:(题解)我们只要每次找一行或一列颜色除了0都相同的,然后如果有对应的操作,就把这行这列都赋值成0即可 */ /* ...
- ACM_发工资(简单贪心)
发工资咯: Time Limit: 2000/1000ms (Java/Others) Problem Description: 作为广财大的老师,最盼望的日子就是每月的8号了,因为这一天是发工资的日 ...
- 一个完整的mybatis项目,包含增删改查
1.导入jar包,导入相关配置文件,均在自己博客园的文件中 编写mybatis.xml文件 <?xml version="1.0" encoding="UTF-8& ...
- C#知识点-枚举器和迭代器
一.几个基本概念的理解 问题一:为什么数组可以使用foreach输出各元素 答:数组是可枚举类型,它实现了一个枚举器(enumerator)对象:枚举器知道各元素的次序并跟踪它们的位置,然后返回请求的 ...
- 调度kettle使用taskctl我该怎么部署
转载自: http://www.taskctl.com/forum/detail_133.html 最近在QQ群看到有小伙伴在问用taskctl调度kettle,都要安装些什么呢?都支持哪些平台上的k ...