1. LIS (Longest Increasing Subsequence)

O (n^2):

/*
LIS(Longest Increasing Subsequence) 最长上升子序列 O (n ^ 2)
状态转移方程:dp[i] = max (dp[j]) + 1 (a[j] < a[i],1 <= j < i)
附带有print输出路径函数
*/
void LIS(void) {
int ret = 0, last = 0;
for (int i=1; i<=n; ++i) {
dp[i] = 1; fa[i] = -1;
for (int j=1; j<i; ++j) {
if (a[j] < a[i] && dp[i] < dp[j] + 1) {
dp[i] = dp[j] + 1; fa[i] = j;
}
}
if (ret < dp[i]) {
ret = dp[i]; last = i;
}
} printf ("%d\n", ret);
print (last); puts ("");
} void print(int x) {
if (fa[x] != -1) {
print (fa[x]); printf (" %d", a[x]);
}
else printf ("%d", a[x]);
}

O (nlogn):

/*
LIS 二分查找优化, O(nlogn)
设当前最长递增子序列为len,考虑元素a[i]; 若d[len]<a[i],则len++,并使d[len]=a[i];
否则,在d[1~len]中二分查找第一个大于等于a[i]的位置j,使d[j]=a[i]。附上打印路径代码(准确性未知)
*/
void LIS(void) {
int len = 1; d[1] = a[1]; fa[1] = -1;
for (int i=2; i<=n; ++i) {
if (d[len] < a[i]) {
d[++len] = a[i];
pos[len] = i; fa[i] = pos[len-1];
}
else {
int j = lower_bound (d+1, d+1+len, a[i]) - d;
d[j] = a[i];
pos[j] = i; fa[i] = (j == 1) ? -1 : pos[j-1];
}
}
printf ("%d\n", len);
vector<int> res; int i;
for (i=pos[len]; ~fa[i]; i=fa[i]) res.push_back (a[i]);
res.push_back (a[i]);
for (int i=res.size ()-1; i>=0; --i) printf ("%d%c", res[i], i == 0 ? '\n' : ' ');
}

2. LCS (Longest Common Subsequence)

/*
LCS(Longest Common Subsequence):
状态转移方程:dp[i][j] = dp[i-1][j-1] + 1; (s[i-1] == t[i-1])
dp[i][j] = max (dp[i][j-1], dp[i-1][j]);(s[i-1] != t[i-1])
可滚动数组优化。附带有print输出路径函数。
*/
void LCS(void) {
memset (dp, 0, sizeof (dp));
memset (fa, 0, sizeof (fa));
for (int i=0; i<=lens; ++i) fa[i][0] = -1;
for (int i=0; i<=lent; ++i) fa[0][i] = 1; for (int i=1; i<=lens; ++i) {
for (int j=1; j<=lent; ++j) {
if (s[i-1] == t[j-1]) {
dp[i][j] = dp[i-1][j-1] + 1;
fa[i][j] = 0;
}
else if (dp[i-1][j] >= dp[i][j-1]) {
dp[i][j] = dp[i-1][j];
fa[i][j] = -1;
}
else {
dp[i][j] = dp[i][j-1];
fa[i][j] = 1;
}
}
} printf ("%d\n", dp[lens][lent]);
print (lens, lent); puts ("");
} void print(int x, int y) {
if (!x && !y) return ;
if (fa[x][y] == 0) {
print (x-1, y-1); printf ("%c", s[x-1]);
}
else if (fa[x][y] == -1) {
print (x-1, y); printf ("%c", s[x-1]);
}
else {
print (x, y-1); printf ("%c", t[y-1]);
}
}

3. LCIS (Longest Common Increasing Subsequence)

/*
LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列
状态转移方程:a[i] != b[j]: dp[i][j] = dp[i-1][j];
a[i] == b[j]: dp[j]=max(dp[j],dp[k]); (1<=k<j&&b[k]<b[j])  
打印路径时按照b[i]来输出
*/
void LCIS(void) {
memset (dp, 0, sizeof (dp));
memset (fx, 0, sizeof (fx));
memset (fy, 0, sizeof (fy));
int sx = 0, sy = 0;
int ret = 0, k = 0;
for (int i=1; i<=n; ++i) {
k = 0;
for (int j=1; j<=m; ++j) {
dp[i][j] = dp[i-1][j]; //以a[]为主循环,每个a[i],去找每个b[j]
fx[i][j] = i - 1; fy[i][j] = j;
if (a[i] == b[j] && dp[i][j] < dp[i][k] + 1) { //满足LCS
dp[i][j] = dp[i][k] + 1; //在1~j-1找到b[k]<a[i],满足LIS,在b[k]上更新dp
fx[i][j] = i; fy[i][j] = k;
}
else if (a[i] > b[j] && dp[i][j] > dp[i][k]) k = j; //找到最优的k
if (ret < dp[i][j]) {
ret = dp[i][j]; //更新所有dp中的最大值
sx = i, sy = j;
}
}
}
printf ("%d\n", ret);
fir = true;
print (sx, sy, -1); puts ("");
} void print(int x, int y, int last) { //bool fir;
if (x == 0 || y == 0) return ;
print (fx[x][y], fy[x][y], y);
if (y != last) {
if (fir) printf ("%d", b[y]), fir = false;
else printf (" %d", b[y]);
}
}

4. LPS (Longest Palidromic Subsequence)

/*
LCS的思想,dp[i][j]表示i到j的最长回文串长度,状态转移方程:
1. dp[j][j+i-1] = dp[j+1][j+i-2] + 2; (str[j] == str[j+i-1])
2. dp[j][j+i-1] = max (dp[j+1][j+i-1], dp[j][j+i-2]); (str[j] != str[j+i-1])
ans[1][len]是string类型,记录LPS字符
*/
void LPS(void) {
int len = strlen (str + 1);
memset (dp, 0, sizeof (dp));
for (int i=1; i<=len; ++i) dp[i][i] = 1;
for (int i=1; i<=len; ++i) ans[i][i] = str[i]; for (int i=2; i<=len; ++i) { //区间长度
for (int j=1; j+i-1<=len; ++j) { //[j, j+i-1]
if (str[j] == str[j+i-1]) {
if (i == 2) {
dp[j][j+i-1] = 2;
ans[j][j+i-1] = ans[j][j] + ans[j+i-1][j+i-1]; continue;
}
dp[j][j+i-1] = dp[j+1][j+i-2] + 2;
ans[j][j+i-1] = str[j] + ans[j+1][j+i-2] + str[j+i-1];
}
else if (dp[j+1][j+i-1] > dp[j][j+i-2]) {
dp[j][j+i-1] = dp[j+1][j+i-1];
ans[j][j+i-1] = ans[j+1][j+i-1];
}
else if (dp[j][j+i-2] > dp[j+1][j+i-1]) {
dp[j][j+i-1] = dp[j][j+i-2];
ans[j][j+i-1] = ans[j][j+i-2];
}
else {
dp[j][j+i-1] = dp[j+1][j+i-1];
ans[j][j+i-1] = min (ans[j+1][j+i-1], ans[j][j+i-2]);
}
}
}
int mlen = dp[1][len];
for (int i=0; i<mlen; ++i) {
printf ("%c", ans[1][len][i]);
}
puts ("");
}

5. MCS (Maximum Continuous Subsequence)

O (n):

/*
MCS (Maximum Continuous Subsequence) 最大子序列和 O (n)
1. DP 2. 前缀
若有多个答案输出第一个,均给出区间端点
*/
void MCS(int n) {
int l = 0, ll = 0, rr = 0;
int sum = -INF, mx = -INF;
for (int i=1; i<=n; ++i) {
if (sum + a[i] < a[i]) {
sum = a[i]; l = i;
}
else sum += a[i];
if (sum > mx) {
mx = sum; ll = l, rr = i;
}
}
printf ("%d %d %d\n", mx, ll, rr);
}

O (n) another:

//O (n) //another
void MCS(int n) {
int l = 0, ll = 0, rr = 0;
int sum = 0, mx = -INF, mn = 0;
for (int i=1; i<=n; ++i) {
sum += a[i];
if (sum - mn > mx) {
mx = sum - mn; ll = l; rr = i;
}
if (sum < mn) {
mn = sum; l = i;
}
}
printf ("%d %d %d\n", mx, ll + 1, rr);
}

O (nlogn):

//O (nlogn)     //输出端点困难
int MCS(int *a, int l, int r) {
if (l == r) {
if (a[l] > 0) return a[l];
else return 0;
}
int mid = (l + r) >> 1;
int lmax = MCS (a, l, mid);
int rmax = MCS (a, mid + 1, r); int lbmax = 0, lbsum = 0;
for (int i=mid; i>=left; --i) { //之前写错了,应该是连续的
lbsum += a[i];
if (lbmax < lbsum) lbmax = lbsum;
}
int rbmax = 0, rbsum = 0;
for (int i=mid+1; i<=r; ++i) {
rbsum += a[i];
if (rbmax < rbsum) rbmax = rbsum;
} return max (lbmax + rbmax, max (lmax, rmax));
}

  

  

LIS && LCS && LCIS && LPS && MCS模板的更多相关文章

  1. LIS+LCS+LCIS

    PS:本篇博文均采用宏#define FOR(i, a, n) for(i = a; i <= n; ++i) LIS:最长上升子序列 废话不多说:http://baike.baidu.com/ ...

  2. 8.3 LIS LCS LCIS(完结了==!)

    感觉这个专题真不好捉,伤心了,慢慢啃吧,孩纸 地址http://acm.hust.edu.cn/vjudge/contest/view.action?cid=28195#overview 密码  ac ...

  3. LIS LCS LCIS (主要过一遍,重在做题)

    只详细讲解LCS和LCIS,别的不讲-做题优先. 菜鸟能力有限写不了题解,可以留评论,我给你找博客. 先得理解最长上升子序列吧,那个HDOJ拦截导弹系列可以做一下,然后用o(n)log(n)的在做一遍 ...

  4. LIS&&LCS&&LCIS

    LIS #include<bits/stdc++.h> using namespace std; int n,a[100005],b[100005],ji; int main(){ cin ...

  5. 线性DP总结(LIS,LCS,LCIS,最长子段和)

    做了一段时间的线性dp的题目是时候做一个总结 线性动态规划无非就是在一个数组上搞嘛, 首先看一个最简单的问题: 一,最长字段和 下面为状态转移方程 for(int i=2;i<=n;i++) { ...

  6. LIS LCS n^2和nlogn解法 以及LCIS

    首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...

  7. LIS和LCS LCIS

    首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...

  8. LIS,LCS,LICS 学习笔记

    1.最长上升子序列(LIS) 子序列: 1.可以不连续 2.相对位置不变 dp[i][j] 表示前i位置,最大值为j的LIS长度 1. dp[i-1][j] 前i-1位置,最大值为j的LIS长度 (没 ...

  9. dp入门(LIS,LCS)

    LCS

随机推荐

  1. LiberOJ#6178. 「美团 CodeM 初赛 Round B」景区路线规划 概率DP

    题意 游乐园被描述成一张 n 个点,m 条边的无向图(无重边,无自环).每个点代表一个娱乐项目,第 i 个娱乐项目需要耗费 ci 分钟的时间,会让小 y 和妹子的开心度分别增加 h1i ,h2i ,他 ...

  2. iOS 在UILabel显示不同的字体和颜色(ios6 and later)

    在项目开发中,我们经常会遇到在这样一种情形:在一个UILabel 使用不同的颜色或不同的字体来体现字符串,在iOS 6 以后我们可以很轻松的实现这一点,官方的API 为我们提供了UILabel类的at ...

  3. 接口_简单get接口_第一个接口

    import flask,json # print(__name__) ##__name__代表当前这个python文件 server = flask.Flask(__name__) #把咱们当前的这 ...

  4. trying to draw too large(106,975,232 bytes) bitmap.

    Loading Large Bitmaps Efficiently This lesson teaches you to Read Bitmap Dimensions and Type Load a ...

  5. 关于布局(Layout)的一切

    之前在布局中有很多问题也有很多经验,遗憾都没记下来.现在一点点记下一些东西. 1.外层用LinearLayout的话,常常把orientation设成vertical, android:orienta ...

  6. Vim Vundle YouCompleteMe

    /************************************************************************************** * Vim Vundle ...

  7. CodeForces19D:Points(线段树+set(动态查找每个点右上方的点))

    Pete and Bob invented a new interesting game. Bob takes a sheet of paper and locates a Cartesian coo ...

  8. [Selenium] 操作浏览器前进后退

    driver.get("http://1.com"); driver.navigate().to("http://2.com"); driver.navigat ...

  9. "Activity" 总结

    1.什么是Activity? 1.四大组件之一 2.通常一个界面对应一个activity 3.是Context的子类 4.同时实现window.callback和keyevent.callback回调 ...

  10. UIAlterController 的使用

    相对于IOS8.4之后苹果对提示框做了进一步的封装,这将与之前的提示框有很大的同. 之前的 UIAlterView  是弹出一个提示框. 而今天学习的提示框是 通过视图控制器进行弹出,这就意味着,我们 ...