题解报告:hdu 6440 Dream(费马小定理+构造)
#include<bits/stdc++.h>
using namespace std;
int t,p;
int main(){
while(cin>>t){
while(t--){
cin>>p;
for(int i=;i<p;++i)
for(int j=;j<p;++j)
printf("%d%c",(i+j)%p,j==p-?'\n':' ');
for(int i=;i<p;++i)
for(int j=;j<p;++j)
printf("%d%c",i*j%p,j==p-?'\n':' ');
}
}
return ;
}
题解报告:hdu 6440 Dream(费马小定理+构造)的更多相关文章
- HDU6440 Dream(费马小定理+构造) -2018CCPC网络赛1003
题意: 给定素数p,定义p内封闭的加法和乘法,使得$(m+n)^p=m^p+n^p$ 思路: 由费马小定理,p是素数,$a^{p-1}\equiv 1(mod\;p)$ 所以$(m+n)^{p}\eq ...
- HDU - 6440(费马小定理)
链接:HDU - 6440 题意:重新定义加法和乘法,使得 (m+n)^p = m^p + n^p 成立,p是素数.,且satisfied that there exists an integer q ...
- hdu6440 Dream 2018CCPC网络赛C 费马小定理+构造
题目传送门 题目大意: 给定一个素数p,让你重载加法运算和乘法运算,使(m+n)p=mp+np,并且 存在一个小于p的q,使集合{qk|0<k<p,k∈Z} 等于集合{k|0<k&l ...
- hdu 4704 Sum 费马小定理
题目链接 求2^n%mod的值, n<=10^100000. 费马小定理 如果a, p 互质, 那么a^(p-1) = 1(mod p) 然后可以推出来a^k % p = a^(k%(p-1) ...
- hdu6440 Dream(费马小定理)
保证 当 n^p=n(mod p) 是成立 只要保证n*m=n*m(mod p); #include<bits/stdc++.h> using namespace std; int ma ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum
Sum Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...
- HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场
A Boring Question Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
随机推荐
- 自定义UISearchDisplayController的“No Results“标签和”Cancel“按钮
本文转载至 http://www.cnblogs.com/pengyingh/articles/2350154.html - (void)searchDisplayControllerWillBegi ...
- POJ 1703 Find them, Catch them(种类并查集)
题目链接 这种类型的题目以前见过,今天第一次写,具体过程,还要慢慢理解. #include <cstring> #include <cstdio> #include <s ...
- BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)
3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...
- ul li menu
第一步:建立一个无序列表我们先建立一个无序列表,来建立菜单的结构.代码是: <ul><li><a href="1">首页</a>&l ...
- Linux epoll 源码注释
https://www.cnblogs.com/stonehat/p/8613505.html 这篇文章值得好好读,先留个记录,回头看. IO多路复用之epoll总结 - Anker's Blog - ...
- MYSQL进阶学习笔记十一:MySQL 表的分析,检查和优化!(视频序号:进阶_28)
知识点十二:MySQL 表的分析,检查和优化(28) 表的分析,检查和优化: 定期分析表: ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, ...
- Oracle :多实例切换
Connecting to 10.1.4.21:22...Connection established.To escape to local shell, press 'Ctrl+Alt+]'. La ...
- http的安全方法和幂等性
最近在研究http,看到http的安全方法和幂等性部分,不太明白,尤其是"post方法是非幂等的"不理解,进过查资料,找到以下两篇有价值的文章,特转过来! 理解HTTP幂等性 转自 ...
- bzoj1089严格n元树——DP+高精度
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1089 f[d]为深度小于等于d的树的个数: 从根节点出发,有n个子树,乘法原理可以得到 f[ ...
- Open multiple excel files in WebBrowser, only the last one gets activated
http://stackoverflow.com/questions/20578053/open-multiple-excel-files-in-webbrowser-only-the-last-on ...