题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_f

题目大意:

给定一个\(N\)点\(M\)边的DAG,\(x_i\)有边连向\(y_i\),保证\(x_i<y_i\),原图有\(2^M\)个生成子图,对于每个子图\(G'\),\(A,B\)两人正在玩一个游戏:初始时点1,2上有棋子,每次操作可以把某个棋子沿有向边移动一步,最后不能操作的人为输。问有多少个子图\(G'\)满足先手必胜


这种神题一看就不会写……首先考虑博弈,先手必胜的话当且仅当\(sg[1]!=sg[2]\),这样不好求,我们考虑求\(sg[1]=sg[2]\)的方案

考虑状压dp,记\(f[S]\)表示只考虑\(S\)这个点集,使得\(sg[1]=sg[2]\)的方案数

枚举\(S\)的一个子集\(T\),其补集为\(U\),假设\(U\)集合的\(sg\)值都为0,而\(T\)集合都不为0,,考虑转移:

\(U\)内部的边:一条都不能连

\(U\)到\(T\)的边:随便连

\(T\)到\(U\)的边:\(T\)中的点至少有一条出边

如何保证1,2的\(sg\)相同,保证他们在同一个集合里即可

至少连边和随意连边我们可以预处理出来,一次转移为\(O(n)\),所以总复杂度为\(O(3^n*n)\)

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
#define min(x,y) (x<y?x:y)
#define max(x,y) (x>y?x:y)
#define lowbit(x) ((x)&-(x))
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=15,p=1e9+7;
bool map[N+10][N+10];
int f[N+10][(1<<N)+10],g[N+10][(1<<N)+10];
int dp[(1<<N)+10],ID[(1<<N)+10];
int mlt(int a,int b){
int res=1;
for (;b;b>>=1,a=1ll*a*a%p) if (b&1) res=1ll*res*a%p;
return res;
}
int main(){
int n=read(),m=read();
for (int i=1;i<=n;i++) ID[1<<(i-1)]=i;
for (int i=1;i<=m;i++){
int x=read(),y=read();
map[x][y]=1;
}
for (int i=1;i<=n;i++)
for (int sta=1;sta<1<<n;sta++)
f[i][sta]=f[i][sta^lowbit(sta)]+map[i][ID[lowbit(sta)]];
for (int i=1;i<=n;i++){
for (int sta=1;sta<1<<n;sta++){
int k=ID[lowbit(sta)];
if (!map[i][k]) g[i][sta]=g[i][sta^lowbit(sta)];
else g[i][sta]=(2ll*g[i][sta^lowbit(sta)]%p+1)%p;
}
}
for (int sta=1;sta<1<<n;sta++){
dp[sta]=1;
for (int sub=(sta-1)&sta;sub;sub=(sub-1)&sta){
if ((sub&1)&&((sta^sub)&2)) continue;
if ((sub&2)&&((sta^sub)&1)) continue;
int res=1,tmp=0;
for (int i=1;i<=n;i++) if (sub&(1<<(i-1))) res=1ll*res*g[i][sta^sub]%p;
for (int i=1;i<=n;i++) if ((sta^sub)&(1<<(i-1))) tmp+=f[i][sub];
res=1ll*res*mlt(2,tmp)%p;
dp[sta]=(dp[sta]+1ll*res*dp[sub])%p;
}
}
printf("%d\n",(mlt(2,m)-dp[(1<<n)-1]+p)%p);
return 0;
}

AtCoder Grand Contest 016 F - Games on DAG的更多相关文章

  1. Atcoder Grand Contest 016 F - Games on DAG(状压 dp)

    洛谷题面传送门 & Atcoder 题面传送门 如何看待 tzc 补他一个月前做的题目的题解 首先根据 SG 定理先手必输当且仅当 \(\text{SG}(1)=\text{SG}(2)\). ...

  2. AtCoder Grand Contest 002 F:Leftmost Ball

    题目传送门:https://agc002.contest.atcoder.jp/tasks/agc002_f 题目翻译 你有\(n*k\)个球,这些球一共有\(n\)种颜色,每种颜色有\(k\)个,然 ...

  3. AtCoder Grand Contest 016 E - Poor Turkeys

    题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_e 题目大意: 有\(N\)只火鸡,现有\(M\)个人,每个人指定了两只火鸡\(x,y\),每 ...

  4. AtCoder Grand Contest 017 F - Zigzag

    题目传送门:https://agc017.contest.atcoder.jp/tasks/agc017_f 题目大意: 找出\(m\)个长度为\(n\)的二进制数,定义两个二进制数的大小关系如下:若 ...

  5. AtCoder Grand Contest 016 C - +/- Rectangle

    题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_c 题目大意: 给定整数\(H,W,h,w\),你需要判断是否存在满足如下条件的矩阵,如果存在 ...

  6. AtCoder Grand Contest 003 F - Fraction of Fractal

    题目传送门:https://agc003.contest.atcoder.jp/tasks/agc003_f 题目大意: 给定一个\(H×W\)的黑白网格,保证黑格四连通且至少有一个黑格 定义分形如下 ...

  7. AtCoder Grand Contest 011 F - Train Service Planning

    题目传送门:https://agc011.contest.atcoder.jp/tasks/agc011_f 题目大意: 现有一条铁路,铁路分为\(1\sim n\)个区间和\(0\sim n\)个站 ...

  8. AtCoder Grand Contest 016 B - Colorful Hats

    题目传送门:https://agc016.contest.atcoder.jp/tasks/agc016_b 题目大意: 有\(N\)只猫,每只猫头上带着一个帽子,帽子有颜色,现在告诉你每只猫能看到的 ...

  9. AtCoder Grand Contest 010 F - Tree Game

    题目传送门:https://agc010.contest.atcoder.jp/tasks/agc010_f 题目大意: 给定一棵树,每个节点上有\(a_i\)个石子,某个节点上有一个棋子,两人轮流操 ...

随机推荐

  1. webpack打包报错Unexpected token

    最近项目要上线,需要对项目进行打包部署到服务器上面,在打包过程中npm run build后出现以下报错Unexpected token: punc (() [./~/_element-ui@1.4. ...

  2. java线程阻塞(sleep,suspend,resume,yield,wait,notify)

    为了解决对共享存储区的访问冲突,Java 引入了同步机制,现在让我们来考察多个线程对共享资源的访问,显然同步机制已经不够了,因为在任意时刻所要求的资源不一定已经准备好了被访问,反过来,同一时刻准备好了 ...

  3. 几个 PHP 的"魔术常量"

    __LINE__ 文件中的当前行号. __FILE__ 文件的完整路径和文件名.如果用在被包含文件中,则返回被包含的文件名.自 PHP 4.0.2 起,__FILE__ 总是包含一个绝对路径(如果是符 ...

  4. Hive Metastore

    metastore:实际保存表信息的地方.     包括: 数据库,表的基本信息:权限信息:存储格式信息:                 各种属性信息:                 权限信息: ...

  5. Codeforces Beta Round #25 (Div. 2 Only)E. Test

    E. Test time limit per test 2 seconds memory limit per test 256 megabytes input standard input outpu ...

  6. 分享一个好用的函数吧,将js中的对象转成url参数

    JavaScript&jQuery获取url参数方法 这个函数呢是自己在写基于Vue+ElementUI管理后台时用到的,,下面列出来两种使用方式: 最普通的,封装一个js函数 /** * 对 ...

  7. js生成随机编码并赋值给input文本框

    效果图如下: 页面代码: <div class="form-item form-width-in fr"> <label>产 品 编 码</label ...

  8. iOS--控制器加载自定义view的xib

    我们在项目中,经常需要使用到自定义的view,而xib布局显得更为简洁,那么如何加载一个自定义的xib呢,网上的方法也很多很多,就是因为太多了,我经常会弄混,所以总结其中一个使用,如果以后使用到其他的 ...

  9. A+B Problem && OJ推荐【持续更新】

    目录 List 前言 长郡 Position: code 1. 2. 持续更新,么么哒 List 前言 有没有觉得写这篇文章很奇怪,这个还是有原因的.①很多OJ都有着道题,所以发个博客②这可以介绍很多 ...

  10. 实现自定义xib和storyboard的加载,

    一:加载xib 1.分别创建xib,.h  .m文件继承自UIView. 在xib上绑定类名. 或者创建文件的时候直接勾选xib 2.在控制器中调用类方法 jyq52787网盘/ios/潭州学院/iO ...