Checkposts

Time Limit: 2000ms
Memory Limit: 262144KB

This problem will be judged on CodeForces. Original ID: 427C
64-bit integer IO format: %I64d      Java class name: (Any)

 
 
Your city has n junctions. There are m one-way roads between the junctions. As a mayor of the city, you have to ensure the security of all the junctions.

To ensure the security, you have to build some police checkposts. Checkposts can only be built in a junction. A checkpost at junction i can protect junction j if either i = j or the police patrol car can go to j from i and then come back to i.

Building checkposts costs some money. As some areas of the city are more expensive than others, building checkpost at some junctions might cost more money than other junctions.

You have to determine the minimum possible money needed to ensure the security of all the junctions. Also you have to find the number of ways to ensure the security in minimum price and in addition in minimum number of checkposts. Two ways are different if any of the junctions contains a checkpost in one of them and do not contain in the other.

Input

In the first line, you will be given an integer n, number of junctions (1 ≤ n ≤ 105). In the next line, n space-separated integers will be given. The ith integer is the cost of building checkpost at the ith junction (costs will be non-negative and will not exceed 109).

The next line will contain an integer m (0 ≤ m ≤ 3·105). And each of the next m lines contains two integers ui and vi (1 ≤ ui, vi ≤ nu ≠ v). A pair ui, vi means, that there is a one-way road which goes from ui to vi. There will not be more than one road between two nodes in the same direction.

 

Output

Print two integers separated by spaces. The first one is the minimum possible money needed to ensure the security of all the junctions. And the second one is the number of ways you can ensure the security modulo 1000000007 (109 + 7).

 

Sample Input

Input
3
1 2 3
3
1 2
2 3
3 2
Output
3 1
Input
5
2 8 0 6 0
6
1 4
1 3
2 4
3 4
4 5
5 1
Output
8 2
Input
10
1 3 2 2 1 3 1 4 10 10
12
1 2
2 3
3 1
3 4
4 5
5 6
5 7
6 4
7 3
8 9
9 10
10 9
Output
15 6
Input
2
7 91
2
1 2
2 1
Output
7 1

Source

 
 
解题:强连通,看有多少个强联通块。每个强联通块里面就个最小的值,然后记录下这个块里,这样小的值有多少个!然后把所有块的最小值的数目乘起来,就是方案数,各块的最小值加起来,就是最小的那个什么什么。。。。注意要用长整型变量,注意要取模。
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include <stack>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
const int maxn = ;
const LL mod = ;
vector<int>g[maxn];
stack<int>s;
int w[maxn],dfn[maxn],low[maxn],n,m,id,scc;
bool instack[maxn];
LL cnt[maxn],sum,ways;
void tarjan(int u){
dfn[u] = low[u] = ++id;
instack[u] = true;
s.push(u);
int v;
for(v = ; v < g[u].size(); v++){
if(!dfn[g[u][v]]){
tarjan(g[u][v]);
low[u] = min(low[u],low[g[u][v]]);
}else if(instack[g[u][v]] && low[u] > dfn[g[u][v]])
low[u] = dfn[g[u][v]];
}
if(dfn[u] == low[u]){
int theMin = INF;
do{
v = s.top();
s.pop();
if(w[v] < theMin){
theMin = w[v];
cnt[scc] = ;
}else if(w[v] == theMin){
cnt[scc]++;
}
instack[v] = false;
}while(v != u);
scc++;
sum += theMin;
}
}
int main() {
int i,j,u,v;
while(~scanf("%d",&n)){
for(i = ; i <= n; i++)
scanf("%d",w+i);
for(i = ; i <= n; i++){
g[i].clear();
instack[i] = false;
low[i] = dfn[i] = ;
cnt[i] = ;
}
scanf("%d",&m);
for(i = ; i < m; i++){
scanf("%d %d",&u,&v);
g[u].push_back(v);
}
while(!s.empty()) s.pop();
sum = scc = id = ;
for(i = ; i <= n; i++)
if(!dfn[i]) tarjan(i);
for(ways = ,i = ; i < scc; i++){
ways = ((ways%mod)*(cnt[i]%mod))%mod;
}
printf("%I64d %I64d\n",sum,ways);
}
return ;
}

xtu summer individual 6 D - Checkposts的更多相关文章

  1. xtu summer individual 4 C - Dancing Lessons

    Dancing Lessons Time Limit: 5000ms Memory Limit: 262144KB This problem will be judged on CodeForces. ...

  2. xtu summer individual 3 C.Infinite Maze

    B. Infinite Maze time limit per test  2 seconds memory limit per test  256 megabytes input standard ...

  3. xtu summer individual 2 E - Double Profiles

    Double Profiles Time Limit: 3000ms Memory Limit: 262144KB This problem will be judged on CodeForces. ...

  4. xtu summer individual 2 C - Hometask

    Hometask Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForces. Origin ...

  5. xtu summer individual 1 A - An interesting mobile game

    An interesting mobile game Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on H ...

  6. xtu summer individual 2 D - Colliders

    Colliders Time Limit: 2000ms Memory Limit: 262144KB This problem will be judged on CodeForces. Origi ...

  7. xtu summer individual 1 C - Design the city

    C - Design the city Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu D ...

  8. xtu summer individual 1 E - Palindromic Numbers

    E - Palindromic Numbers Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %l ...

  9. xtu summer individual 1 D - Round Numbers

    D - Round Numbers Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u D ...

随机推荐

  1. MyEclipse中Tomcat对应JVM的参数配置

    MyEclipse中Tomcat对应JVM的参数配置: -Xmx512M -Xms256M -XX:MaxPermSize=256m

  2. oracle (DBaaS) 服务介绍

    转 https://oracle-base.com/articles/vm/oracle-cloud-database-as-a-service-dbaas-create-service?utm_so ...

  3. 会jQuery,该如何用AngularJS编程思想?

    我可以熟练使用jQuery进行客户端应用的开发,但是现在我希望开始使用Angular.js.哪位能描述一下这个过程中必要的模式变化吗?希望您的答案能够围绕下面这些具体的问题: 1. 我如何对客户端we ...

  4. React.js 简介

    React.js 是一个帮助你构建页面 UI 的库.如果你熟悉 MVC 概念的话,那么 React 的组件就相当于 MVC 里面的 View.如果你不熟悉也没关系,你可以简单地理解为,React.js ...

  5. .NET 出现参数化查询 需要参数但未提供该参数的错误

    1.问题的来源 在.NET或者C#中,我们一般执行sql语句的话,推荐使用参数化查询,这样可以避免sql注入的攻击,但是,我在使用参数化查询的时候 出现了以下的错误,详细如下图: 图一这是写sql语句 ...

  6. DBUtils使用技巧

    BbUtils(一) 结果集概览:http://www.cnblogs.com/myit/p/4269165.html DbUtils(二) 结果集实例:http://www.cnblogs.com/ ...

  7. Common.Logging.dll----------配置方式,可选引用,用于日志输出

    1.简介common logging是一个通用日志接口,log4net是一个具体实现. common logging可以把输出连接到其他非log类上, 如EntLib的日志.NLog等 2.使用接下来 ...

  8. Matlab基础之单元数组和结构数组

    Matlab基础之单元数组和结构数组 前言: 单元数组和结构数组是一种新的数据类型,能将不同类型.不同维数的数组组合在一起,从而方便对不同的数据类型方便管理和维护. 如上图所示的2*2矩阵中,分别存储 ...

  9. C++ 异常处理(try catch throw)、命名空间

    一.c++工具 模板(函数模板.类模板).异常处理.命名空间等功能是c++编译器的功能,语言本身不自带,这些功能已经成为ANSI C++标准了,建议所有的编译器都带这些功能,早期的c++是没有这些功能 ...

  10. Beta冲刺提交-星期三

    - 这个作业属于哪个课程 <https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1> 这个作业要求在哪里 <htt ...