洛谷 - P2261 - 余数求和
https://www.luogu.org/problemnew/show/P2261
看了一下题解,取模运算可以换成减法来做。 $a\%b=a-b*\lfloor\frac{a}{b}\rfloor$ ,所以求和式可以化简,然后用数论分块来搞。
#include<bits/stdc++.h>
using namespace std;
#define ll long long int main() {
ll n,k;
scanf("%lld%lld",&n,&k);
ll ans=n*k;
for(ll l=,r; l<=n; l=r+) {
if(k/l!=) {
r=min(k/(k/l),n);
} else {
//k/l==0,意味着l>k,所有的后面的下整都是0,分成同一块
r=n;
break;
}
ans-=(k/l)*(r-l+)*(l+r)/;
}
printf("%lld",ans);
return ;
}
洛谷 - P2261 - 余数求和的更多相关文章
- 洛谷P2261 余数求和
整除分块的小应用. 考虑到 k % x = k - (k / x) * x 所以把 x = 1...n 加起来就是 k * n - (k / i) * i i = 1...k(注意这里是k) 对于这个 ...
- 洛谷P2261余数求和
传送门啦 再一次见证了分块的神奇用法,在数论里用分块思想. 我们要求 $ ans = \sum\limits ^{n} _{i=1} (k % i) $ ,如果我没看错,这个题的暴力有 $ 60 $ ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
随机推荐
- Codeforces Round #266 (Div. 2) C. Number of Ways
You've got array a[1], a[2], ..., a[n], consisting of n integers. Count the number of ways to split ...
- 有方向的运动js
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8 ...
- [转]Visual Studio 2012 编译错误【error C4996: 'scanf': This function or variable may be unsafe. 】的解决方案
原文地址:http://www.cnblogs.com/gb2013/archive/2013/03/05/SecurityEnhancementsInTheCRT.html 在VS 2012 中编译 ...
- windows10 開機失敗,且按F8無法進入安全模式
windows10 開機失敗,且按F8無法進入安全模式: 在cmd視窗下: bcdedit set {default} bootmenupolicy legacy 重啟,再按F8試一試吧! To En ...
- docker下用keepalived+Haproxy实现高可用负载均衡集群
启动keepalived后宿主机无法ping通用keepalived,报错: [root@localhost ~]# ping 172.18.0.15 PING () bytes of data. F ...
- mysql 内置函数大全 mysql内置函数大全
mysql 内置函数大全 2013年01月15日 19:02:03 阅读数:4698 对于针对字符串位置的操作,第一个位置被标记为1. ASCII(str) 返回字符串str的最左面字符的ASCII代 ...
- JavaScript 模拟键盘事件
JavaScript 模拟键盘事件和鼠标事件(比如模拟按下回车等) 2016年09月08日 15:23:25 神秘_博士 阅读数:41158 标签: javascript鼠标键盘事件模拟更多 个人分类 ...
- [转载]JSONP跨域的原理解析
JavaScript是一种在Web开发中经常使用的前端动态脚本技术.在JavaScript中,有一个很重要的安全性限制,被称为“Same-Origin Policy”(同源策略).这一策略对于Java ...
- 翻译:A Tutorial on the Device Tree (Zynq) -- Part IV
获取资源信息 内核模块驱动加载之后,就开始把硬件资源管理起来,如读写寄存器.接收中断. 来看看设备树里的一条: xillybus_0: xillybus@50000000 { compatible = ...
- Andriod Atom x86模拟器启动报错。
用Inter Atom模式的Android模拟器启动报一下错误: Starting emulator for AVD 'new' emulator: ERROR: x86 emulation curr ...