bzoj1304
树形dp
题目是要求最深的颜色
先开始觉得设dp[i][0/1/2]表示这个点的状态,然后发现没办法保证该点是最深的点,且dp状态没有实际意义,其实dp[i][0/1]表示当前i的子树颜色为c^1的叶子结点都已经染好了,现在颜色为c的还没染好,注意当前i节点还没有染色,那么dp[i][0]=min(dp[j][0],dp[j][1]+1),表示j为根的子树白色还没染好,黑色染好了,那么当前到i还是没染好,也就不用把i节点染色,继续保持没有染好的状态,d[j][1]+1表示j的子树中0染好了,1没染好,那么现在变成1已经染好而0没有染好,所以必须染一个1,那么操作数量+1,也就把j子树中的1染好了
最后就是min(dp[root][0],dp[root][1])+1,+1是因为dp状态表示当前树中还有一种颜色没染好,所以必须染一次,+1,这里节点没有染色是由dp[i][0]=dp[j][0],表示当前i节点暂时不染色。保证子树中一种颜色染好而另一种颜色没有染好是由dp初值保证的,叶子结点dp[i][c]=0,dp[i][c^1]=inf,表示不存在的颜色不存在没有染好的情况。
#include<bits/stdc++.h>
using namespace std;
const int N = ;
int n, m;
int dp[N][], c[N];
vector<int> G[N];
void dfs(int u, int last)
{
if(u <= m)
{
dp[u][c[u] ^ ] = << ;
return;
}
for(int i = ; i < G[u].size(); ++i)
{
int v = G[u][i];
if(v == last) continue;
dfs(v, u);
dp[u][] += min(dp[v][], dp[v][] + );
dp[u][] += min(dp[v][], dp[v][] + );
}
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= m; ++i) scanf("%d", &c[i]);
for(int i = ; i < n; ++i)
{
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(n, );
printf("%d\n", min(dp[n][], dp[n][]) + );
return ;
}
bzoj1304的更多相关文章
- BZOJ1304 CQOI2009叶子的染色(树形dp)
令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...
- 【BZOJ1304】[CQOI2009]叶子的染色(动态规划)
[BZOJ1304][CQOI2009]叶子的染色(动态规划) 题面 BZOJ 洛谷 题解 很简单. 设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2 ...
- BZOJ1304 CQOI2009 叶子的染色 【树形DP】
BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...
- BZOJ1304: [CQOI2009]叶子的染色
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...
- BZOJ1304: [CQOI2009]叶子的染色 树形dp
Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...
- 【bzoj1304】[CQOI2009]叶子的染色 树形dp
题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含一个有色结点( ...
- 【树形dp】bzoj1304: [CQOI2009]叶子的染色
又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...
- 【BZOJ做题记录】07.07~?
在NOI一周前重开一个坑 最后更新时间:7.08 07:38 7.06 下午做的几道CQOI题: BZOJ1257: [CQOI2007]余数之和sum:把k mod i写成k-k/i*i然后分段求后 ...
- 【BZOJ4297】[PA2015]Rozstaw szyn 树形DP
[BZOJ4297][PA2015]Rozstaw szyn Description 给定一棵有n个点,m个叶子节点的树,其中m个叶子节点分别为1到m号点,每个叶子节点有一个权值r[i].你需要给剩下 ...
随机推荐
- Centos7配置Grafana对接OpenLDAP
在grafana的主配置文件grafana.ini中开启LDAP认证 注意:grafana有两个地方需要指定(/etc/grafana/grafana.ini和/usr/share/grafana/c ...
- Linux/UNIX之文件和文件夹(2)
文件和文件夹(2) link.ulink.remove和rename函数 #include <unistd.h> int link(const char *oldpath, const c ...
- C语言连接MySQL(codeblocks)
#include <stdio.h> #include <winsock2.h> #include <mysql.h> /*数据库连接用宏*/ #define HO ...
- POJ--2284--That Nice Euler Circuit【平面图欧拉公式】
链接:id=2284">http://poj.org/problem?id=2284 题意:一个自己主动绘图的机器在纸上(无限大)绘图,笔尖从不离开纸,有n个指令,每一个指令是一个坐标 ...
- (转载)常用的Mysql数据库操作语句大全
打开CMD,进入数据库命令:mysql -hlocalhost -uroot -p 退出数据库:exit 用户管理: 1.新建用户: >CREATE USER name IDENTIFIED B ...
- 浅谈JavaScript的函数表达式(递归)
递归函数,在前面的博客中已经简单的介绍了.递归函数是一个通过函数名称在函数内部调用自身的函数.如下: function fac(num){ if(num<1){ return 1; } else ...
- 关于 truncate table 的一点学习札记
---下面整理笔记来之 itpub 的各位前辈的语录.这里做了一个汇总.仅供学习. truncate table后,oracle会回收表和其表中所在的索引到initial 大小,也就是初始分配的seg ...
- LeetCode题解(14)--Longest Common Prefix
https://leetcode.com/problems/longest-common-prefix/ 原题: Write a function to find the longest common ...
- (30)java web的hibernate使用-c3p0连接池配置
hibernate支持c3p0连接池 需要导入c3p0的jar包 <!-- 配置连接驱动管理类 --> <property name="hibernate.connecti ...
- extjs4 treepanel 多个checkbox先中 多个节点选中 多级节点展开
//<%@ page contentType="text/html; charset=utf-8" %> var checkedNodes = { _data:{}, ...