题目链接:https://vjudge.net/problem/POJ-1459

Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 29270   Accepted: 15191

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

Source

题意:

有np个供电站(只供电不用电)、nc个用电站(只用电不供电),以及n-np-nc个中转站(既不供电也不用电),且已经知道这些站的连接关系,问单位时间最多能消耗多少的电?

题解:

最大流问题。

1.建立超级源点,超级源点与每个供电站相连,且边的容量为供电站的最大供电量,表明流经此供电站的电量最多只能为自身的供电量。

2.建立超级汇点,每个用电站与超级汇点相连,且边的容量为用电站的最大用电量,表明流经此用电站的电量最多只能为自身的消耗量。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 1e2+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(cur, , sizeof(cur));
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = cur[u]; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = cur[u] = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && mindis>dis[v])
{
cur[u] = v;
mindis = dis[v];
}
if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} int main()
{
int n, np, nc, m;
while(scanf("%d%d%d%d", &n,&np,&nc,&m)!=EOF)
{
int start = n, end = n+;
memset(maze, , sizeof(maze));
for(int i = ; i<=m; i++)
{
int u, v, w;
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&w);
maze[u][v] = w;
} for(int i = ; i<=np; i++)
{
int id, p;
while(getchar()!='(');
scanf("%d)%d", &id,&p);
maze[start][id] = p;
} for(int i = ; i<=nc; i++)
{
int id, p;
while(getchar()!='(');
scanf("%d)%d", &id,&p);
maze[id][end] = p;
} cout<< sap(start, end, n+) <<endl;
}
}

POJ1459 Power Network —— 最大流的更多相关文章

  1. poj1087 A Plug for UNIX & poj1459 Power Network (最大流)

    读题比做题难系列…… poj1087 输入n,代表插座个数,接下来分别输入n个插座,字母表示.把插座看做最大流源点,连接到一个点做最大源点,流量为1. 输入m,代表电器个数,接下来分别输入m个电器,字 ...

  2. poj1459 Power Network --- 最大流 EK/dinic

    求从电站->调度站->消费者的最大流,给出一些边上的容量.和电站和消费者能够输入和输出的最大量. 加入一个超级源点和汇点,建边跑模板就能够了. 两个模板逗能够. #include < ...

  3. POJ1459 Power Network(网络最大流)

                                         Power Network Time Limit: 2000MS   Memory Limit: 32768K Total S ...

  4. poj1459 Power Network (多源多汇最大流)

    Description A power network consists of nodes (power stations, consumers and dispatchers) connected ...

  5. POJ1459 - Power Network

    原题链接 题意简述 原题看了好几遍才看懂- 给出一个个点,条边的有向图.个点中有个源点,个汇点,每个源点和汇点都有流出上限和流入上限.求最大流. 题解 建一个真 · 源点和一个真 · 汇点.真 · 源 ...

  6. POJ1459 Power Network 网络流 最大流

    原文链接http://www.cnblogs.com/zhouzhendong/p/8326021.html 题目传送门 - POJ1459 题意概括 多组数据. 对于每一组数据,首先一个数n,表示有 ...

  7. POJ-1459 Power Network(最大流)

    https://vjudge.net/problem/POJ-1459 题解转载自:優YoU http://user.qzone.qq.com/289065406/blog/1299339754 解题 ...

  8. [poj1459]Power Network(多源多汇最大流)

    题目大意:一个网络,一共$n$个节点,$m$条边,$np$个发电站,$nc$个用户,$n-np-nc$个调度器,每条边有一个容量,每个发电站有一个最大负载,每一个用户也有一个最大接受量.问最多能供给多 ...

  9. POJ-1459 Power Network---最大流

    题目链接: https://cn.vjudge.net/problem/POJ-1459 题目大意: 简单的说下题意(按输入输出来讲,前面的描述一堆的rubbish,还用来误导人),给你n个点,其中有 ...

随机推荐

  1. linux和windows下分别如何查看电脑是32位的还是64位?

    WINDOWS下查看的方法: 方法一. 在开始→运行中输入“winver”,如果您的系统是64位的,会明确标示出“x64 edition”. 方法二.(推荐) 在cmd窗口中输入systeminfo回 ...

  2. spring mvc 单元测试示例

    import java.awt.print.Printable; import java.io.IOException; import javax.servlet.http.HttpServletRe ...

  3. Longge的问题(bzoj 2705)

    Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). Input 一 ...

  4. Codevs 1021 玛丽卡==洛谷 P1186

    时间限制: 2 s 空间限制: 128000 KB  题目等级 : 大师 Master  题目描述 Description 麦克找了个新女朋友,玛丽卡对他非常恼火并伺机报复. 因为她和他们不住在同一个 ...

  5. 转 Linux命令-文件管理命令

    http://jingyan.baidu.com/article/9113f81bc1c7a72b3214c7d3.html Linux命令-文件管理命令 浏览:4118 | 更新:2012-11-1 ...

  6. msp430项目编程57

    msp430综合项目---扩展项目七57 1.电路工作原理 2.代码(显示部分) 3.代码(功能实现) 4.项目总结

  7. cout与cerr

    cout对应于标准输出流,默认情况下是显示器.这是一个被缓冲的输出,可以被重定向. cerr对应标准错误流,用于显示错误消息.默认情况下被关联到标准输出流,但它不被缓冲,也就说错误消息可以直接发送到显 ...

  8. 【微信小程序】开发实战 之 「配置项」与「逻辑层」

    微信小程序作为微信生态重要的一环,在实际生活.工作.商业中的应用越来越广泛.想学习微信小程序开发的朋友也越来越多,本文将在小程序框架的基础上就微信小程序项目开发所必需的基础知识及语法特点进行了详细总结 ...

  9. easyui combobox模糊查询

    用easyui框架开发的攻城狮恐怕都遇到过这样一个问题,就是在新增页面combobox下拉框需要支持模糊查询,但是输入不是combobox中Data里面的值的时候,点击保存,依然是可以新增进去的,这样 ...

  10. Go -- 并发编程的两种限速方法

    引子 golang提供了goroutine快速实现并发编程,在实际环境中,如果goroutine中的代码要消耗大量资源时(CPU.内存.带宽等),我们就需要对程序限速,以防止goroutine将资源耗 ...