题目链接:https://vjudge.net/problem/POJ-1459

Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 29270   Accepted: 15191

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

Source

题意:

有np个供电站(只供电不用电)、nc个用电站(只用电不供电),以及n-np-nc个中转站(既不供电也不用电),且已经知道这些站的连接关系,问单位时间最多能消耗多少的电?

题解:

最大流问题。

1.建立超级源点,超级源点与每个供电站相连,且边的容量为供电站的最大供电量,表明流经此供电站的电量最多只能为自身的供电量。

2.建立超级汇点,每个用电站与超级汇点相连,且边的容量为用电站的最大用电量,表明流经此用电站的电量最多只能为自身的消耗量。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXN = 1e2+; int maze[MAXN][MAXN];
int gap[MAXN], dis[MAXN], pre[MAXN], cur[MAXN];
int flow[MAXN][MAXN]; int sap(int start, int end, int nodenum)
{
memset(cur, , sizeof(cur));
memset(dis, , sizeof(dis));
memset(gap, , sizeof(gap));
memset(flow, , sizeof(flow));
int u = pre[start] = start, maxflow = , aug = INF;
gap[] = nodenum; while(dis[start]<nodenum)
{
loop:
for(int v = cur[u]; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && dis[u] == dis[v]+)
{
aug = min(aug, maze[u][v]-flow[u][v]);
pre[v] = u;
u = cur[u] = v;
if(v==end)
{
maxflow += aug;
for(u = pre[u]; v!=start; v = u, u = pre[u])
{
flow[u][v] += aug;
flow[v][u] -= aug;
}
aug = INF;
}
goto loop;
} int mindis = nodenum-;
for(int v = ; v<nodenum; v++)
if(maze[u][v]-flow[u][v]> && mindis>dis[v])
{
cur[u] = v;
mindis = dis[v];
}
if((--gap[dis[u]])==) break;
gap[dis[u]=mindis+]++;
u = pre[u];
}
return maxflow;
} int main()
{
int n, np, nc, m;
while(scanf("%d%d%d%d", &n,&np,&nc,&m)!=EOF)
{
int start = n, end = n+;
memset(maze, , sizeof(maze));
for(int i = ; i<=m; i++)
{
int u, v, w;
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&w);
maze[u][v] = w;
} for(int i = ; i<=np; i++)
{
int id, p;
while(getchar()!='(');
scanf("%d)%d", &id,&p);
maze[start][id] = p;
} for(int i = ; i<=nc; i++)
{
int id, p;
while(getchar()!='(');
scanf("%d)%d", &id,&p);
maze[id][end] = p;
} cout<< sap(start, end, n+) <<endl;
}
}

POJ1459 Power Network —— 最大流的更多相关文章

  1. poj1087 A Plug for UNIX & poj1459 Power Network (最大流)

    读题比做题难系列…… poj1087 输入n,代表插座个数,接下来分别输入n个插座,字母表示.把插座看做最大流源点,连接到一个点做最大源点,流量为1. 输入m,代表电器个数,接下来分别输入m个电器,字 ...

  2. poj1459 Power Network --- 最大流 EK/dinic

    求从电站->调度站->消费者的最大流,给出一些边上的容量.和电站和消费者能够输入和输出的最大量. 加入一个超级源点和汇点,建边跑模板就能够了. 两个模板逗能够. #include < ...

  3. POJ1459 Power Network(网络最大流)

                                         Power Network Time Limit: 2000MS   Memory Limit: 32768K Total S ...

  4. poj1459 Power Network (多源多汇最大流)

    Description A power network consists of nodes (power stations, consumers and dispatchers) connected ...

  5. POJ1459 - Power Network

    原题链接 题意简述 原题看了好几遍才看懂- 给出一个个点,条边的有向图.个点中有个源点,个汇点,每个源点和汇点都有流出上限和流入上限.求最大流. 题解 建一个真 · 源点和一个真 · 汇点.真 · 源 ...

  6. POJ1459 Power Network 网络流 最大流

    原文链接http://www.cnblogs.com/zhouzhendong/p/8326021.html 题目传送门 - POJ1459 题意概括 多组数据. 对于每一组数据,首先一个数n,表示有 ...

  7. POJ-1459 Power Network(最大流)

    https://vjudge.net/problem/POJ-1459 题解转载自:優YoU http://user.qzone.qq.com/289065406/blog/1299339754 解题 ...

  8. [poj1459]Power Network(多源多汇最大流)

    题目大意:一个网络,一共$n$个节点,$m$条边,$np$个发电站,$nc$个用户,$n-np-nc$个调度器,每条边有一个容量,每个发电站有一个最大负载,每一个用户也有一个最大接受量.问最多能供给多 ...

  9. POJ-1459 Power Network---最大流

    题目链接: https://cn.vjudge.net/problem/POJ-1459 题目大意: 简单的说下题意(按输入输出来讲,前面的描述一堆的rubbish,还用来误导人),给你n个点,其中有 ...

随机推荐

  1. BZOJ 4808 马 二分图最大独立集

    题目应该就是最大独立集了吧,没什么了,平面图求最大独立集需要/2的, WQH说加直接+双向边考研过,结果真的过了,应该是匈牙利算法寻找的 时候更加快了吧.(方便找边) #include<cstd ...

  2. JSP学习笔记(七十八):struts2中s:select标签的使用

    1.第一个例子: <s:select list="{'aa','bb','cc'}" theme="simple" headerKey="00& ...

  3. 【JQ同胞遍历】

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. Nk 1430 Divisors(因子数与质因数)

    Time Limit: 5000 ms    Memory Limit: 10000 kB   Total Submit : 432 (78 users)   Accepted Submit : 10 ...

  5. HDU 4803 Poor Warehouse Keeper (贪心+避开精度)

    555555,能避开精度还是避开精度吧,,,,我们是弱菜.. Poor Warehouse Keeper Time Limit: 2000/1000 MS (Java/Others)    Memor ...

  6. msp430项目编程57

    msp430综合项目---扩展项目七57 1.电路工作原理 2.代码(显示部分) 3.代码(功能实现) 4.项目总结

  7. Redis数据结构之压缩列表

    压缩列表是Redis为了节约内存而开发的,由一系列特殊编码的连续内存块组成的顺序型数据结构.一个压缩列表可以包含任意多个节点,每个节点可以保存一个字节数组或者一个整数值. 一.压缩列表结构1. 压缩列 ...

  8. 什么是 Linux

    什么是Linux Linux是一套免费使用和自由传播的类Unix操作系统,是一个基于POSIX和UNIX的多用户.多任务.支持多线程和多CPU的操作系统.它能运行主要的UNIX工具软件.应用程序和网络 ...

  9. 【编码】封装RedisPubSub工具

    基本介绍 核心原理:利用Redis的List列表实现,发布事件对应rpush,订阅事件对应lpop 问题一:Redis不是自带Pub/Sub吗? redis自带的pub/sub有两个问题: 1.如果发 ...

  10. spark学习(五)总结及其demo

    RDD及其特点 1.RDD是Spark的核心数据模型,但是个抽象类,全称为Resillient Distributed Dataset,即弹性分布式数据集. 2.RDD在抽象上来说是一种元素集合,包含 ...