具体ipynb文件请移步Github
#各种所需要的库函数首先加载
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
import warnings
warnings.filterwarnings('ignore')
%matplotlib inline # Part 1.iris深入认识 ### 这是什么数据,加载后请分析? iris=pd.read_csv('data/iris-data.csv')
iris.head() iris.shape iris.columns.tolist() iris.count() iris.info() iris.describe() iris.isnull().sum() #又是class列名惹的祸
iris.rename(columns={'class':'species'},inplace=True)
iris['species'].value_counts() #### 初步探索:
#数据共有150行数据,每行5列;
#前4列为两个二元组,即花萼长宽、花瓣长宽;
#第五列为花的种类,由于列名不一致,所以列出了5中,但只有三种。
#空值数据为petal_width_cm,有5个空值
#类别名称不要用class,命名产生冲突 ### 解决第一步遇到的问题
#1.解决类名不一致
#2.解决空值 #### 以上发现了类名有问题,即列名不一致。
#某列的名字需要改:data_df.rename(columns={'class':'Species'},inplace=True)
#某列中的类别需要改:data_df['Species'].replace(['versicolor','Iris-setossa'],['Iris-versicolor','Iris-setosa'],inplace=True) iris['species'].replace(['versicolor','Iris-setossa'],['Iris-versicolor','Iris-setosa'],inplace=True)
iris['species'].value_counts() #### 解决空值问题,由于空值少,所以可以用均值填充,如果缺失值太多,那么可以剔除,但要保留数据到备份。
#### 特别注意,空值是属于哪一类的,不要拿所有类的均值填充!!!
#### pd.loc是用[], excuse me ? #average=iris['petal_width_cm'].mean()#skipna : boolean, default True
#iris['petal_width_cm'].fillna(average)
iris.isnull().sum()
df_part=iris[iris['petal_width_cm'].isnull()==True]
df_part
#注意到空值的所有数据都是Iris-setosa的数据,所以用这个数据填充
average=iris.loc[iris['species']=='Iris-setosa','petal_width_cm' ].mean()
iris.loc[(iris['species']=='Iris-setosa') & (iris['petal_width_cm'].isnull()),'petal_width_cm'] iris.loc[(iris['species']=='Iris-setosa') & (iris['petal_width_cm'].isnull()),'petal_width_cm']=average
iris.isnull().sum() # Part 2.各种图表分析 sb.pairplot(iris,hue='species') #### seaborn的二元plot绘图很好用,两两组合,对角线是hist图表。
#### 以上观察第一列的黄点和第二列观察到蓝色是离群点。再用柱状图进一步分析:
#### 以下发现Iris-versicolor中的 sepal_length_cm有问题 iris[iris['species']=='Iris-versicolor'].hist() iris[iris['sepal_length_cm']<2.5] iris.loc[(iris['species']=='Iris-versicolor') & (iris['sepal_length_cm']>2.5), 'sepal_length_cm' ].mean() iris.loc[(iris['species']=='Iris-versicolor') & (iris['sepal_length_cm']<2.5), 'sepal_length_cm' ].mean() #### 对比发现,两种数据相差100倍,所以根据业务场景分析,应该是单位cm与 m 导致的错误,所以纠正数据而不是drop数据。
#### 此处用到了 *= 的精髓, 将原来的数据扩大或缩小倍数 iris.loc[(iris['species']=='Iris-versicolor') & (iris['sepal_length_cm']<2.5), 'sepal_length_cm' ] *=100 #### 接下来观察蓝色离群点,即Iris-setosa,绘制以下图表后发现:
#### 其sepal_width_cm异常 iris.loc[iris['species']=='Iris-setosa','sepal_width_cm'].hist() iris.loc[(iris['species']=='Iris-setosa') & (iris['sepal_width_cm']<2.5)] iris.loc[(iris['species']=='Iris-setosa') & (iris['sepal_width_cm']>2.5),'sepal_width_cm'].describe() (2.9-2.3)/2.3
(3.44-2.3)/3.44 #就该异常点来看:(2.9-2.3)%2.3=0.26086956521739135,
#它本身就离群中心较远,而且比离他最近的都小了较大的一部分。由于没有具体场景分析调整,所以drop掉 iris = iris.loc[(iris['species'] != 'Iris-setosa') | (iris['sepal_width_cm'] >= 2.5)]
iris.loc[iris['species'] == 'Iris-setosa', 'sepal_width_cm'].hist()
; sb.pairplot(iris,hue='species') #### 清洗完数据后就可以保存干净的数据到新的csv文件中了。 iris.to_csv('iris-data-clean.csv', index=False)
iris_data_clean = pd.read_csv('iris-data-clean.csv') ## Testing our data # We know that we should only have three classes
assert len(iris_data_clean['species'].unique()) == 3 # We know that sepal lengths for 'Iris-versicolor' should never be below 2.5 cm
assert iris_data_clean.loc[iris_data_clean['species'] == 'Iris-versicolor', 'sepal_length_cm'].min() >= 2.5 # We know that our data set should have no missing measurements
assert len(iris_data_clean.loc[(iris_data_clean['sepal_length_cm'].isnull()) |
(iris_data_clean['sepal_width_cm'].isnull()) |
(iris_data_clean['petal_length_cm'].isnull()) |
(iris_data_clean['petal_width_cm'].isnull())]) == 0 sb.pairplot(iris_data_clean)#没有 hue参数,所以全都是一类,都是同一颜色
; sb.pairplot(iris_data_clean,hue='species')
; 花瓣的尺寸可以很容易地区分Iris-setosa和其他类型的鸢尾。鉴于Iris-versicolor和鸢尾-virginica的测量值有多少重叠,区分它们将变得更加困难。 花瓣长度和花瓣宽度,以及萼片长度和萼片宽度之间也存在相关性。 田野生物学家向我们保证,这是可以预料的:花瓣越长,往往越宽,萼片也一样。 我们也可以把数据绘制成小提琴图来比较各个班级的测量分布。 plt.figure(figsize=(10, 10)) for column_index, column in enumerate(iris_data_clean.columns): if column == 'species':
continue #print('column_index=',column_index) column_index是0序
plt.subplot(2, 2, column_index + 1)
sb.violinplot(x='species', y=column, data=iris_data_clean)

Deep_into_iris的更多相关文章

随机推荐

  1. B - Mike and Fun

    Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Description Mike a ...

  2. 清理c盘的文件

    C:/Users/用户名/AppData里面默认有三个文件夹,分别是Local,LocalLow,Roaming,简单地来说,都是用来存放软件的配置文件和临时文件的,里面有很多以软件公司或者软件名称命 ...

  3. Linux 命令 -- tar

    tar 命令 tar命令可以为linux的文件和目录创建档案.利用tar,可以为某一特定文件创建档案(备份文件),也可以在档案中改变文件,或者向档案中加入新的文件.tar最初被用来在磁带上创建档案,现 ...

  4. java使用new Date()和System.currentTimeMillis()获取当前时间戳(转载)

    转自:http://www.cnblogs.com/wuchen/archive/2012/06/30/2570746.html 在开发过程中,通常很多人都习惯使用new Date()来获取当前时间, ...

  5. E20180421-hm

    ambiguous  adj. 模棱两可; 含糊的,不明确的; 引起歧义的; 有两种或多种意思的; simple  adj. 简单的; 单纯的; 易受骗的; 天真的; simplify  vt. 简化 ...

  6. https://www.luogu.org/blog/An-Amazing-Blog/mu-bi-wu-si-fan-yan-ji-ge-ji-miao-di-dong-xi

    https://www.luogu.org/blog/An-Amazing-Blog/mu-bi-wu-si-fan-yan-ji-ge-ji-miao-di-dong-xi

  7. Unity Transform常识(转)

    Variables   position: Vector3  物体在世界坐标中的位置. transform.position=Vector3(10,10,10)//把物体放到(x=10,y=10,z= ...

  8. Codeforces Round #408 (Div. 2) D

    Description Inzane finally found Zane with a lot of money to spare, so they together decided to esta ...

  9. 模拟 Codeforces Round #297 (Div. 2) A. Vitaliy and Pie

    题目传送门 /* 模拟:这就是一道模拟水题,看到标签是贪心,还以为错了呢 题目倒是很长:) */ #include <cstdio> #include <algorithm> ...

  10. 转 sql 查出一张表中重复的所有记录数据

    select * from DB_PATCH awhere lower(a.db_name) in (select lower(db_name) from DB_PATCH group by lowe ...