[ SNOI 2013 ] Quare
Description
求一张无向带权图的边双连通生成子图的最小代价。
Solution
核心的思路是,一个点双连通分量肯定是一堆环的并。
考虑增量地构造这个边双连通图,每次把一个环并进去,相当于加入了一条链。
那么这个转移需要:原集合的代价,链的代价,链的端点连入集合的代价。
设 \(A\) 为新图点集,\(S\) 为原图点集,设 \(f[S]\) 表示点集 \(S\) 构成边双连通分量的最小代价。
设 \(T\) 为新加入链的点集,\(u,v\) 分别为加入的链的端点,设 \(g[u][v][T]\) 表示该链的最小代价。
设 \(mm[u][S]\) 表示点 \(u\) 向集合 \(S\) 中的点所连边中,边权最小值。
\]
但是注意,如果新加入的链退化成了一个点,加入的代价就算少了。
因此设 \(sec[u][S]\) 表示点 \(u\) 向集合 \(S\) 中的点所连边中,边权次小值。
那么对于 \(u=v\) 的情况:
\]
预处理 \(mn\) 和 \(sec\) 复杂度 \(\mathcal O(n^2\times 2^n)\)
预处理 \(g\) 暴力枚举一个端点的变化,复杂度 \(\mathcal O(n^3\times 2^n)\)
计算 \(f\) 需要枚举子集,然后枚举 \(u, v\) ,复杂度 \(\mathcal O(n^2\times 3^n )\)
#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 15
#define M 105
#define S 4105
using namespace std;
inline int rd() {
int x = 0;
char c = getchar();
while (!isdigit(c)) c = getchar();
while (isdigit(c)) {
x = x * 10 + (c ^ 48); c = getchar();
}
return x;
}
int n, m, tot, lim, hd[N];
struct edge{int w, to, nxt;} e[M << 1];
inline void add(int u, int v, int w) {
e[++tot].to = v; e[tot].w = w;
e[tot].nxt = hd[u]; hd[u] = tot;
}
//mn[i][S]: i 到 S 最短路
//sec[i][S]: i 到 S 次短路
//g[i][j][S]: 一条链,节点集合为 S, 端点分别为 i, j
//f[S]: 集合为 S 的合法方案
int f[S], g[N][N][S], mn[N][S], sec[N][S];
inline void mmin(int &x, int y) {x = min(x, y);}
inline int countbit(int s) {
int res = 0;
for (int i = 0; i < n; ++i)
res += ((s & (1 << i)) > 0);
return res;
}
inline void work() {
n = rd(); m = rd();
tot = 0; lim = (1 << n);
for (int i = 0; i <= n; ++i) hd[i] = 0;
for (int i = 1, u, v, w; i <= m; ++i) {
u = rd() - 1; v = rd() - 1; w = rd();
add(u, v, w); add(v, u, w);
}
memset(f, 0x1f, sizeof(f));
memset(g, 0x1f, sizeof(g));
memset(mn, 0x1f, sizeof(mn));
memset(sec, 0x1f, sizeof(sec));
int inf = f[0];
//处理 mn 和 sec
for (int s = 1; s < lim; ++s)
for (int u = 0; u < n; ++u)
if ((s & (1 << u)) == 0)
for (int i = hd[u], v; i; i = e[i].nxt) {
v = e[i].to;
if ((s & (1 << v)) == 0) continue;
if (e[i].w < mn[u][s]) {
sec[u][s] = mn[u][s];
mn[u][s] = e[i].w; continue;
} else sec[u][s] = min(sec[u][s], e[i].w);
}
//处理 g
for (int u = 0; u < n; ++u) g[u][u][1 << u] = 0;
for (int s = 1; s < lim; ++s)
for (int u = 0; u < n; ++u)
for (int x = 0; x < n; ++x)
if (g[u][x][s] < inf)
for (int i = hd[u], v; i; i = e[i].nxt) {
v = e[i].to;
if (s & (1 << v)) continue;
mmin(g[v][x][s | (1 << v)], g[u][x][s] + e[i].w);
}
//处理 f
for (int u = 0; u < n; ++u) f[1 << u] = 0;
for (int nw = 1; nw < lim; ++nw)
if (countbit(nw) >= 2) {
for (int s = nw & (nw - 1); s; s = (s - 1) & nw) {
int t = nw - s;
for (int u = 0; u < n; ++u)
if (s & (1 << u)) for (int v = 0; v < n; ++v)
if (s & (1 << v) && g[u][v][s] < inf) {
if (u == v) f[nw] = min(f[nw], f[t] + g[u][v][s] + mn[u][t] + sec[u][t]);
else f[nw] = min(f[nw], f[t] + g[u][v][s] + mn[u][t] + mn[v][t]);
}
}
}
if (f[lim - 1] == inf) puts("impossible");
else printf("%d\n", f[lim - 1]);
}
int main() {
int testcase = rd();
while (testcase--) work();
return 0;
}
[ SNOI 2013 ] Quare的更多相关文章
- 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...
- SharePoint 2013: A feature with ID has already been installed in this farm
使用Visual Studio 2013创建一个可视web 部件,当右击项目选择"部署"时报错: "Error occurred in deployment step ' ...
- Visual Studio 2013 添加一般应用程序(.ashx)文件到SharePoint项目
默认,在用vs2013开发SharePoint项目时,vs没有提供一般应用程序(.ashx)的项目模板,本文解决此问题. 以管理员身份启动vs2013,创建一个"SharePoint 201 ...
- SharePoint 2013 create workflow by SharePoint Designer 2013
这篇文章主要基于上一篇http://www.cnblogs.com/qindy/p/6242714.html的基础上,create a sample workflow by SharePoint De ...
- Install and Configure SharePoint 2013 Workflow
这篇文章主要briefly introduce the Install and configure SharePoint 2013 Workflow. Microsoft 推出了新的Workflow ...
- SharePoint 2013 configure and publish infopth
This article will simply descript how to configure and publish a InfoPath step by step. Note: To con ...
- TFS 2013 培训视频
最近给某企业培训了完整的 TFS 2013 系列课程,一共四天. 下面是该课程的内容安排: 项目管理 建立项目 成员的维护 Backlog 定义 任务拆分 迭代 ...
- Visual Studio 2013 Ultimate因为CodeLens功能导致Microsoft.Alm.Shared.Remoting.RemoteContainer.dll高CPU占用率的折中解决方案
1.为什么Microsoft.Alm.Shared.Remoting.RemoteContainer.dll的CPU占用率以及内存使用率会那么高? 在Visual Studio 2013 Ultima ...
- 沙盒解决方案解决SharePoint 2013 以其他身份登陆的问题
众所周知,SharePoint 2013没有像SharePoint 2010那样有一个叫"以其他身份登录"的菜单项. 当然解决方案也很多,比如你可以直接修改Welcome.ascx ...
随机推荐
- IOS中UIActionSheet使用方法详解
一.初始化方法 - (instancetype)initWithTitle:(NSString *)title delegate:(id<UIActionSheetDelegate>)de ...
- spring boot---WebFilter注解 实现自定义登录过滤器
https://my.oschina.net/wangnian/blog/647976 http://www.jianshu.com/p/05c8be17c80a
- POJ3252 Round Numbers —— 数位DP
题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Su ...
- html5--6-8 CSS选择器5
html5--6-8 CSS选择器5 实例 <!DOCTYPE html> <html lang="zh-cn"> <head> <met ...
- https证书/即SSL数字证书申请途径和流程
国际CA机构GlobalSign中国 数字证书颁发中心网站:http://cn.globalsign.com https证书即SSL数字证书,是广泛用 于网站通讯加密传输的解决方案,是提供通信保 ...
- 「网络流24题」「LuoguP4016」 负载平衡问题
Description GGG 公司有 nnn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nnn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. ...
- Bootstrap-CL:按钮下拉菜单
ylbtech-Bootstrap-CL:按钮下拉菜单 1.返回顶部 1. Bootstrap 按钮下拉菜单 本章将讲解如何使用 Bootstrap class 向按钮添加下拉菜单.如需向按钮添加下拉 ...
- bzoj3198
容斥原理+哈希表 恰好k个,那么上容斥原理,我们先2^6枚举相同的位置,用哈希表判断有多少个对应位置相同的元素,然后用容斥原理计算,似乎这里的容斥没有那么简单,详见这里 http://www.cnbl ...
- 文件的创建,读取,写入,修改,删除---python入门
转自:http://blog.163.com/jackylau_v/blog/static/175754040201181505158356/ 一.用Python创建一个新文件,内容是从0到9的整数, ...
- H.264(MPEG-4 AVC)级别(Level)、DPB 与 MaxDpbMbs 详解(转载)
转自:http://www.cnblogs.com/zyl910/archive/2011/12/08/h264_level.html 对于H.264(MPEG-4 AVC)而言,级别(Level)是 ...