Description

题目链接

求一张无向带权图的边双连通生成子图的最小代价。

Solution

核心的思路是,一个点双连通分量肯定是一堆环的并。

考虑增量地构造这个边双连通图,每次把一个环并进去,相当于加入了一条链。

那么这个转移需要:原集合的代价,链的代价,链的端点连入集合的代价。

设 \(A\) 为新图点集,\(S\) 为原图点集,设 \(f[S]\) 表示点集 \(S\) 构成边双连通分量的最小代价。

设 \(T\) 为新加入链的点集,\(u,v\) 分别为加入的链的端点,设 \(g[u][v][T]\) 表示该链的最小代价。

设 \(mm[u][S]\) 表示点 \(u\) 向集合 \(S\) 中的点所连边中,边权最小值。

\[f[A]=f[S]+g[u][v][T]+mn[u][S]+mn[v][S]
\]

但是注意,如果新加入的链退化成了一个点,加入的代价就算少了。

因此设 \(sec[u][S]\) 表示点 \(u\) 向集合 \(S\) 中的点所连边中,边权次小值。

那么对于 \(u=v\) 的情况:

\[f[A]=f[S]+g[u][u][T]+mn[u][S]+sec[u][S]
\]

预处理 \(mn\) 和 \(sec\) 复杂度 \(\mathcal O(n^2\times 2^n)\)

预处理 \(g\) 暴力枚举一个端点的变化,复杂度 \(\mathcal O(n^3\times 2^n)\)

计算 \(f\) 需要枚举子集,然后枚举 \(u, v\) ,复杂度 \(\mathcal O(n^2\times 3^n )\)

#include <cmath>
#include <cstdio>
#include <cctype>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 15
#define M 105
#define S 4105
using namespace std; inline int rd() {
int x = 0;
char c = getchar();
while (!isdigit(c)) c = getchar();
while (isdigit(c)) {
x = x * 10 + (c ^ 48); c = getchar();
}
return x;
} int n, m, tot, lim, hd[N]; struct edge{int w, to, nxt;} e[M << 1]; inline void add(int u, int v, int w) {
e[++tot].to = v; e[tot].w = w;
e[tot].nxt = hd[u]; hd[u] = tot;
} //mn[i][S]: i 到 S 最短路
//sec[i][S]: i 到 S 次短路
//g[i][j][S]: 一条链,节点集合为 S, 端点分别为 i, j
//f[S]: 集合为 S 的合法方案 int f[S], g[N][N][S], mn[N][S], sec[N][S]; inline void mmin(int &x, int y) {x = min(x, y);} inline int countbit(int s) {
int res = 0;
for (int i = 0; i < n; ++i)
res += ((s & (1 << i)) > 0);
return res;
} inline void work() {
n = rd(); m = rd();
tot = 0; lim = (1 << n);
for (int i = 0; i <= n; ++i) hd[i] = 0;
for (int i = 1, u, v, w; i <= m; ++i) {
u = rd() - 1; v = rd() - 1; w = rd();
add(u, v, w); add(v, u, w);
}
memset(f, 0x1f, sizeof(f));
memset(g, 0x1f, sizeof(g));
memset(mn, 0x1f, sizeof(mn));
memset(sec, 0x1f, sizeof(sec));
int inf = f[0];
//处理 mn 和 sec
for (int s = 1; s < lim; ++s)
for (int u = 0; u < n; ++u)
if ((s & (1 << u)) == 0)
for (int i = hd[u], v; i; i = e[i].nxt) {
v = e[i].to;
if ((s & (1 << v)) == 0) continue;
if (e[i].w < mn[u][s]) {
sec[u][s] = mn[u][s];
mn[u][s] = e[i].w; continue;
} else sec[u][s] = min(sec[u][s], e[i].w);
}
//处理 g
for (int u = 0; u < n; ++u) g[u][u][1 << u] = 0;
for (int s = 1; s < lim; ++s)
for (int u = 0; u < n; ++u)
for (int x = 0; x < n; ++x)
if (g[u][x][s] < inf)
for (int i = hd[u], v; i; i = e[i].nxt) {
v = e[i].to;
if (s & (1 << v)) continue;
mmin(g[v][x][s | (1 << v)], g[u][x][s] + e[i].w);
}
//处理 f
for (int u = 0; u < n; ++u) f[1 << u] = 0;
for (int nw = 1; nw < lim; ++nw)
if (countbit(nw) >= 2) {
for (int s = nw & (nw - 1); s; s = (s - 1) & nw) {
int t = nw - s;
for (int u = 0; u < n; ++u)
if (s & (1 << u)) for (int v = 0; v < n; ++v)
if (s & (1 << v) && g[u][v][s] < inf) {
if (u == v) f[nw] = min(f[nw], f[t] + g[u][v][s] + mn[u][t] + sec[u][t]);
else f[nw] = min(f[nw], f[t] + g[u][v][s] + mn[u][t] + mn[v][t]);
}
}
}
if (f[lim - 1] == inf) puts("impossible");
else printf("%d\n", f[lim - 1]);
} int main() {
int testcase = rd();
while (testcase--) work();
return 0;
}

[ SNOI 2013 ] Quare的更多相关文章

  1. 2013 Asia Changsha Regional Contest---Josephina and RPG(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4800 Problem Description A role-playing game (RPG and ...

  2. SharePoint 2013: A feature with ID has already been installed in this farm

    使用Visual Studio 2013创建一个可视web 部件,当右击项目选择"部署"时报错: "Error occurred in deployment step ' ...

  3. Visual Studio 2013 添加一般应用程序(.ashx)文件到SharePoint项目

    默认,在用vs2013开发SharePoint项目时,vs没有提供一般应用程序(.ashx)的项目模板,本文解决此问题. 以管理员身份启动vs2013,创建一个"SharePoint 201 ...

  4. SharePoint 2013 create workflow by SharePoint Designer 2013

    这篇文章主要基于上一篇http://www.cnblogs.com/qindy/p/6242714.html的基础上,create a sample workflow by SharePoint De ...

  5. Install and Configure SharePoint 2013 Workflow

    这篇文章主要briefly introduce the Install and configure SharePoint 2013 Workflow. Microsoft 推出了新的Workflow ...

  6. SharePoint 2013 configure and publish infopth

    This article will simply descript how to configure and publish a InfoPath step by step. Note: To con ...

  7. TFS 2013 培训视频

    最近给某企业培训了完整的 TFS 2013 系列课程,一共四天. 下面是该课程的内容安排: 项目管理     建立项目     成员的维护     Backlog 定义     任务拆分     迭代 ...

  8. Visual Studio 2013 Ultimate因为CodeLens功能导致Microsoft.Alm.Shared.Remoting.RemoteContainer.dll高CPU占用率的折中解决方案

    1.为什么Microsoft.Alm.Shared.Remoting.RemoteContainer.dll的CPU占用率以及内存使用率会那么高? 在Visual Studio 2013 Ultima ...

  9. 沙盒解决方案解决SharePoint 2013 以其他身份登陆的问题

    众所周知,SharePoint 2013没有像SharePoint 2010那样有一个叫"以其他身份登录"的菜单项. 当然解决方案也很多,比如你可以直接修改Welcome.ascx ...

随机推荐

  1. IOS中UIActionSheet使用方法详解

    一.初始化方法 - (instancetype)initWithTitle:(NSString *)title delegate:(id<UIActionSheetDelegate>)de ...

  2. spring boot---WebFilter注解 实现自定义登录过滤器

    https://my.oschina.net/wangnian/blog/647976 http://www.jianshu.com/p/05c8be17c80a

  3. POJ3252 Round Numbers —— 数位DP

    题目链接:http://poj.org/problem?id=3252 Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Su ...

  4. html5--6-8 CSS选择器5

    html5--6-8 CSS选择器5 实例 <!DOCTYPE html> <html lang="zh-cn"> <head> <met ...

  5. https证书/即SSL数字证书申请途径和流程

    国际CA机构GlobalSign中国 数字证书颁发中心网站:http://cn.globalsign.com    https证书即SSL数字证书,是广泛用 于网站通讯加密传输的解决方案,是提供通信保 ...

  6. 「网络流24题」「LuoguP4016」 负载平衡问题

    Description GGG 公司有 nnn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 nnn 个仓库的库存数量相同.搬运货物时,只能在相邻的仓库之间搬运. ...

  7. Bootstrap-CL:按钮下拉菜单

    ylbtech-Bootstrap-CL:按钮下拉菜单 1.返回顶部 1. Bootstrap 按钮下拉菜单 本章将讲解如何使用 Bootstrap class 向按钮添加下拉菜单.如需向按钮添加下拉 ...

  8. bzoj3198

    容斥原理+哈希表 恰好k个,那么上容斥原理,我们先2^6枚举相同的位置,用哈希表判断有多少个对应位置相同的元素,然后用容斥原理计算,似乎这里的容斥没有那么简单,详见这里 http://www.cnbl ...

  9. 文件的创建,读取,写入,修改,删除---python入门

    转自:http://blog.163.com/jackylau_v/blog/static/175754040201181505158356/ 一.用Python创建一个新文件,内容是从0到9的整数, ...

  10. H.264(MPEG-4 AVC)级别(Level)、DPB 与 MaxDpbMbs 详解(转载)

    转自:http://www.cnblogs.com/zyl910/archive/2011/12/08/h264_level.html 对于H.264(MPEG-4 AVC)而言,级别(Level)是 ...