COT2 - Count on a tree II(树上莫队)
You are given a tree with N nodes. The tree nodes are numbered from 1 to N. Each node has an integer weight.
We will ask you to perform the following operation:
u v : ask for how many different integers that represent the weight of nodes there are on the path from u to v.
Input
In the first line there are two integers N and M. (N <= 40000, M <= 100000)
In the second line there are N integers. The i-th integer denotes the weight of the i-th node.
In the next N-1 lines, each line contains two integers u v, which describes an edge (u, v).
In the next M lines, each line contains two integers u v, which means an operation asking for how many different integers that represent the weight of nodes there are on the path from u to v.
Output
For each operation, print its result.
Example
Input:
8 2
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5
7 8
Output:
4
4
思路:树上莫队的模板题
LCA用tarjan算法来找,可以变成DFS以后的序列,然后再用莫队算法的思路。
#include <bits/stdc++.h>
using namespace std;
int const SIZE=40100;
int const BLOCK_SIZE=300;
//利用hash记录LCA
struct Hash{
typedef struct __t{int a;int b;__t(int aa=0,int bb=0):a(aa),b(bb){}}key_t;
typedef int value_t;
enum{MOD=0x1fffff};
key_t keys[MOD+1];
value_t values[MOD+1];
int head[MOD+1];
int next[MOD+1];
int toUsed;
Hash():toUsed(0){fill(head,head+MOD+1,-1);}
void clear(){fill(head,head+MOD+1,-1);toUsed=0;}
int getKey(key_t const&key)const {
int ret=17;
ret=ret*37+key.a;
ret=ret*37+key.b;
return ret;
}
void insert(key_t const&key,value_t const&value){
int k = getKey(key) & MOD;
keys[toUsed] = key;
values[toUsed] = value;
next[toUsed] = head[k];
head[k] = toUsed++;
}
value_t find(key_t const&key)const{
int k = getKey(key) & MOD;
for(int i=head[k];i!=-1;i=next[i]){
if ( keys[i].a == key.a && keys[i].b == key.b ) return values[i];
}
return 0;
}
void disp(FILE*fp)const{
for(int i=1;i<toUsed;++i){
fprintf(fp,"(%d %d): %d\n",keys[i].a,keys[i].b,values[i]);
}
}
}Lca;
struct dege_t{
int to;
int next;
}Edge[SIZE<<1];
int ECnt=1;
int Vertex[SIZE]={0};
inline void makeEdge(int a,int b)
{
Edge[ECnt].to=b;
Edge[ECnt].next=Vertex[a];
Vertex[a]=ECnt++;
Edge[ECnt].to=a;
Edge[ECnt].next=Vertex[b];
Vertex[b]=ECnt++;
}
//生成DFS序
int InIdx[SIZE],OutIdx[SIZE];
int NewIdx[SIZE<<1];
int NCnt = 1;
void dfs(int node,int parent){
NewIdx[NCnt] = node;
InIdx[node] = NCnt++;
for(int next=Vertex[node];next;next=Edge[next].next){
int to = Edge[next].to;
if ( to != parent ) dfs(to,node);
}
NewIdx[NCnt] = node;
OutIdx[node] = NCnt++;
}
//Tarjan算法中用到的并查集
int Father[SIZE];
int find(int x){return x==Father[x]?x:Father[x]=find(Father[x]);}
bool Flag[SIZE] = {false};
vector<vector<int> > Questions(SIZE,vector<int>());
//Tarjan算法一次性求出所有的LCA
void Tarjan(int u,int parent){
Father[u] = u;
Flag[u] = true;
for(int next=Vertex[u];next;next=Edge[next].next){
int to = Edge[next].to;
if ( to == parent ) continue;
Tarjan(to,u);
Father[to] = u;
}
vector<int>&vec=Questions[u];
for(vector<int>::iterator it=vec.begin();it!=vec.end();++it){
int v = *it;
if ( Flag[v] ){
int r = find(v);
Lca.insert(Hash::key_t(u,v),r);
Lca.insert(Hash::key_t(v,u),r);
}
}
}
struct _t{
int s,e;
int idx;
int lca;
};
bool operator < (_t const&lhs,_t const&rhs){
int ln = lhs.s / BLOCK_SIZE;
int rn = rhs.s / BLOCK_SIZE;
return ln < rn || ( ln == rn && lhs.e < rhs.e );
}
int N,M;
int A[SIZE];
_t B[100000];
//将原树上的路径问题转化为DFS序中的区间问题
inline void mkQuestion(int a,int b,int idx){
int lca = Lca.find(Hash::key_t(a,b));
if ( lca == a || lca == b ){
int t = lca == a ? b : a;
B[idx].s = OutIdx[t];
B[idx].e = OutIdx[lca];
B[idx].lca = 0;
}else{
B[idx].lca = lca;
if ( OutIdx[a] < InIdx[b] ) B[idx].s = OutIdx[a], B[idx].e = InIdx[b];
else B[idx].s = OutIdx[b], B[idx].e = InIdx[a];
}
}
int MoAns;
int Ans[100000],Cnt[SIZE];
inline void insert(int n){
if ( 1 == ++Cnt[n] ) ++MoAns;
}
inline void remove(int n){
if ( 0 == --Cnt[n] ) --MoAns;
}
void MoOp(int idx){
int k = NewIdx[idx];
if ( Flag[k] ) remove(A[k]);
else insert(A[k]);
Flag[k] ^= 1;
}
void Mo(){
sort(B,B+M);
fill(Flag,Flag+N+1,false);
int curLeft = 1;
int curRight = 0;
MoAns = 0;
for(int i=0;i<M;++i){
while( curRight < B[i].e ) MoOp(++curRight);
while( curLeft > B[i].s ) MoOp(--curLeft);
while( curRight > B[i].e ) MoOp(curRight--);
while( curLeft < B[i].s ) MoOp(curLeft++);
if ( B[i].lca ){
Ans[B[i].idx] = MoAns + ( 0 == Cnt[A[B[i].lca]] ? 1 : 0 );
}else{
Ans[B[i].idx] = MoAns;
}
}
}
void init(int n){
ECnt = NCnt = 1;
fill(Vertex,Vertex+n+1,0);
fill(Flag,Flag+n+1,false);
}
int getUnsigned(){
char ch = getchar();
while( ch > '9' || ch < '0' ) ch = getchar();
int ret = 0;
do ret = ret * 10 + (int)(ch-'0');while( '0' <= (ch=getchar()) && ch <= '9' );
return ret;
}
int W[SIZE];
bool read(){
if ( EOF == scanf("%d",&N) ) return false;
M = getUnsigned();
init(N);
//权值输入并离散化
for(int i=1;i<=N;++i) W[i] = A[i] = getUnsigned();
sort(W+1,W+N+1);
int* pn = unique(W+1,W+N+1);
for(int i=1;i<=N;++i) A[i] = lower_bound(W+1,pn,A[i]) - W;
int a,b;
for(int i=1;i<N;++i){
a = getUnsigned();
b = getUnsigned();
makeEdge(a,b);
}
dfs(1,0);
for(int i=0;i<M;++i){
B[i].s = getUnsigned();
B[i].e = getUnsigned();
B[i].idx = i;
Questions[B[i].s].push_back(B[i].e);
Questions[B[i].e].push_back(B[i].s);
}
Tarjan(1,0);
for(int i=0;i<M;++i) mkQuestion(B[i].s,B[i].e,i);
return true;
}
int main(){
//freopen("1.txt","r",stdin);
while ( read() ){
Mo();
for(int i=0;i<M;++i)printf("%d\n",Ans[i]);
}
return 0;
}
COT2 - Count on a tree II(树上莫队)的更多相关文章
- spoj COT2 - Count on a tree II 树上莫队
题目链接 http://codeforces.com/blog/entry/43230树上莫队从这里学的, 受益匪浅.. #include <iostream> #include < ...
- SP10707 COT2 - Count on a tree II (树上莫队)
大概学了下树上莫队, 其实就是在欧拉序上跑莫队, 特判lca即可. #include <iostream> #include <algorithm> #include < ...
- SP10707 COT2 - Count on a tree II [树上莫队学习笔记]
树上莫队就是把莫队搬到树上-利用欧拉序乱搞.. 子树自然是普通莫队轻松解决了 链上的话 只能用树上莫队了吧.. 考虑多种情况 [X=LCA(X,Y)] [Y=LCA(X,Y)] else void d ...
- SPOJ COT2 Count on a tree II 树上莫队算法
题意: 给出一棵\(n(n \leq 4 \times 10^4)\)个节点的树,每个节点上有个权值,和\(m(m \leq 10^5)\)个询问. 每次询问路径\(u \to v\)上有多少个权值不 ...
- [SPOJ]Count on a tree II(树上莫队)
树上莫队模板题. 使用欧拉序将树上路径转化为普通区间. 之后莫队维护即可.不要忘记特判LCA #include<iostream> #include<cstdio> #incl ...
- SPOJ COT2 - Count on a tree II(LCA+离散化+树上莫队)
COT2 - Count on a tree II #tree You are given a tree with N nodes. The tree nodes are numbered from ...
- spoj COT2 - Count on a tree II
COT2 - Count on a tree II http://www.spoj.com/problems/COT2/ #tree You are given a tree with N nodes ...
- 【SPOJ10707】 COT2 Count on a tree II
SPOJ10707 COT2 Count on a tree II Solution 我会强制在线版本! Solution戳这里 代码实现 #include<stdio.h> #inclu ...
- SPOJ COT2 Count on a tree II (树上莫队,倍增算法求LCA)
题意:给一个树图,每个点的点权(比如颜色编号),m个询问,每个询问是一个区间[a,b],图中两点之间唯一路径上有多少个不同点权(即多少种颜色).n<40000,m<100000. 思路:无 ...
随机推荐
- JAVA原始的导出excel文件,快捷通用 方便 还能够导出word文档哦
如今导出excel基本上都是用poi了,当报表格式非常负责的时候 开发难度会加大 假设报表有格式有变化 那就更复杂了,先发现一个非常老的技术.能够解决格式复杂的报表. 实例代码例如以下: <%@ ...
- Meteor第一个应用程序
这一个小教程将教你如何建立你的第一个 Meteor 应用程序. 步骤 1 - 创建App 要创建应用程序,我们将从命令提示符窗口运行 meteor create 命令.该应用程序的名称是 meteor ...
- WEKA简单介绍与资源汇总
简单介绍 Weka是一个开源的数据挖掘软件,里面集成了很多经典的机器学习算法,在高校和科研机构中受到了广泛的应用. 具体的简单介绍和简单的使用请參考文档:<使用Weka进行数据挖掘>. 学 ...
- Apach POI 如何拿到有公式的单元格,计算结果
public static void getFormulaCellValue(){ FileInputStream fis = new FileInputStream("c:/temp/te ...
- 动态标绘演示系统1.4.3(for ArcGIS Flex)
标绘有API文档啦! 在线浏览 ------------------------------------------------------------------------------------ ...
- NS3网络仿真(12): ICMPv4协议
快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 ICMP的全称是 Internet ControlMessage Protocol . 其目的就是 ...
- css3最新版中文参考手册在线浏览
对于CSS 3.0,它对于我们Web设计人员来说不只是新奇的技术,更重要的是这些全新概念的Web应用给我们的设计开发提高了效率以及更多的无限可能性,我们将不必再依赖图片或者 Javascript 去完 ...
- Highcharts报表——让你的网页上图表画的飞起
Highcharts是一款纯javascript编写的图表库,能够很简单便捷的在Web网站或Web应用中添加交互性的图表,Highcharts目前支持直线图.曲线图.面积图.柱状图.饼图.散点图等多达 ...
- Xcode The identity used to sign the executable is no longer valid. 错误解决
Xcode真机调试时出现问题:Xcode The identity used to sign the executable is no longer valid. Please verify that ...
- Eclipse添加Qt插件
此文件仅为步骤操作作一个记录,以便以后方便查阅. 1.操作大体参考这个网站:http://blog.csdn.net/defonds/article/details/5013412 2.我的运行环境: ...