https://www.luogu.org/problem/show?pid=1122

题目描述

小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题。一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题。于是当日课后,小明就向老师提出了这个问题:

一株奇怪的花卉,上面共连有N 朵花,共有N-1条枝干将花儿连在一起,并且未修剪时每朵花都不是孤立的。每朵花都有一个“美丽指数”,该数越大说明这朵花越漂亮,也有“美丽指数”为负数的,说明这朵花看着都让人恶心。所谓“修剪”,意为:去掉其中的一条枝条,这样一株花就成了两株,扔掉其中一株。经过一系列“修剪“之后,还剩下最后一株花(也可能是一朵)。老师的任务就是:通过一系列“修剪”(也可以什么“修剪”都不进行),使剩下的那株(那朵)花卉上所有花朵的“美丽指数”之和最大。

老师想了一会儿,给出了正解。小明见问题被轻易攻破,相当不爽,于是又拿来问你。

输入输出格式

输入格式:

输入文件maxsum3.in的第一行一个整数N(1 ≤ N ≤ 16000)。表示原始的那株花卉上共N 朵花。

第二行有N 个整数,第I个整数表示第I朵花的美丽指数。

接下来N-1行每行两个整数a,b,表示存在一条连接第a 朵花和第b朵花的枝条。

输出格式:

输出文件maxsum3.out仅包括一个数,表示一系列“修剪”之后所能得到的“美丽指数”之和的最大值。保证绝对值不超过2147483647。

输入输出样例

输入样例#1:

7
-1 -1 -1 1 1 1 0
1 4
2 5
3 6
4 7
5 7
6 7
输出样例#1:

3

说明

【数据规模与约定】

对于60%的数据,有N≤1000;

对于100%的数据,有N≤16000。

树形DP

任意节点为跟,若他子树和<0,就减去这颗子树,f[u]表示,u的子树的最大和

ans=max{ f[i] }

 #include <cstdio>

 #define max(a,b) (a>b?a:b)
bool if_;
inline void read(int &x)
{
if_=x=; register char ch=getchar();
for(; ch>''||ch<''; ch=getchar()) if(ch=='-') if_=;
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
x=if_?((~x)+):x;
}
const int N(+);
int n,val[N],f[N],ans;
int head[N],sumedge;
struct Edge {
int v,next;
Edge(int v=,int next=):v(v),next(next){}
}edge[N<<];
inline void ins(int u,int v)
{
edge[++sumedge]=Edge(v,head[u]);
head[u]=sumedge;
edge[++sumedge]=Edge(u,head[v]);
head[v]=sumedge;
}
int DFS(int u,int fa)
{
if(f[u]) return f[u];
f[u]=val[u];
for(int x,v,i=head[u]; i; i=edge[i].next)
{
v=edge[i].v;
if(v==fa) continue;
x=DFS(v,u); f[u]+=x*(x>);
}
return f[u];
} int Presist()
{
read(n);
for(int i=; i<=n; ++i) read(val[i]);
for(int u,v,i=; i<n; ++i)
read(u),read(v),ins(u,v);
DFS(,-);
for(int i=; i<=n; ++i) ans=max(ans,f[i]);
printf("%d\n",ans);
return ;
} int Aptal=Presist();
int main(){;}

洛谷—— P1122 最大子树和的更多相关文章

  1. 洛谷P1122 最大子树和

    P1122 最大子树和 题目提供者该用户不存在 标签动态规划树形结构 难度普及/提高- 通过/提交54/100 提交该题 讨论 题解 记录 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在 ...

  2. 洛谷 P1122 最大子树和

    P1122 最大子树和 题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的 ...

  3. 洛谷——P1122 最大子树和

    P1122 最大子树和 树形DP,$f[u]$表示以u为根的子树的最大美丽指数 $f[u]+=max(0,f[v])$ 树形DP的基本结构,先搜再DP,这题感觉有点儿贪心的性质,选就要选美丽值> ...

  4. 洛谷P1122 最大子树和 (树状dp)

    题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...

  5. 洛谷P1122 最大子树和 树形DP初步

    小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明就向老师提 ...

  6. 洛谷P1122最大子树和题解

    题目 一道比较好想的树形\(DP\) 完全可以用树形DP的基本思路,递归,然后取最优的方法. \(Code\) #include <iostream> #include <cstri ...

  7. 【洛谷P1122】最大子树和

    题目大意:给定一棵 N 个节点的无根树,点有点权,点权有正有负,求这棵树的联通块的最大权值之和是多少. 题解:设 \(dp[i]\) 表示以 i 为根节点的最大子树和,那么只要子树的 dp 值大于0, ...

  8. [洛谷P1122][题解]最大子树和

    这是一道还算简单的树型dp. 转移方程:f[i]=max(f[j],0) 其中i为任意非叶节点,j为i的一棵子树,而每棵子树都有选或不选两种选择 具体看代码: #include<bits/std ...

  9. AC日记——最大子树和 洛谷 P1122

    题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...

随机推荐

  1. [SDOI2010]外星千足虫(高斯消元)

    高斯消元裸题... 方法一:暴力,O(2^n)20分 方法二:直接Gauss,加点玄学技巧搞得好的话70分 方法三:使用bitset优化,复杂度:$O(\frac{n^3}{ω})$ 不会的同学看一下 ...

  2. 【转】Spark:Master High Availability(HA)高可用配置的2种实现

    原博文出自于: 感谢! Spark Standalone集群是Master-Slaves架构的集群模式,和大部分的Master-Slaves结构集群一样,存在着Master单点故障的问题.如何解决这个 ...

  3. EasyUI系列学习(九)-Panel(面板)

    一.加载方式 1.class加载 <div class="easyui-panel" title="面板一" style="width:500p ...

  4. hibernate关联关系查询

    关联关系 一对一 A中包含B的对象,B中包含A的对象 一对多 A中包含B的集合,B中包含A的对象 多对多 A中包含B的集合,B中包含A的集合 1,一对多配置 一名老师可以对应多名学生 2,模型类 老师 ...

  5. [ USACO 2001 OPEN ] 地震

    \(\\\) Description​ 给出一张 \(n\) 个点 \(m\) 条边的无向图,现在要建一棵生成树. 每条边都有消耗的时间 \(t_i\),也有建造的代价 \(w_i\) . 最后总金给 ...

  6. IBatis的分页研究

    IBatis的分页研究 博客分类: Ibatis学习   摘自: http://cpu.iteye.com/blog/311395 yangtingkun   Oracle分页查询语句 ibaits. ...

  7. 后台接收不到postman发送的xml参数的解决办法

    首先在body下复制需要传的xml: 然后点击url右边的Params,添加key和value.value和body下的xml是一样的: 最后点击send,后台就能接收到参数了.

  8. mac下iterm2 设置笔记

    1.利用brew install zsh 来安装oh my zsh 2.chsh -s /bin/zsh,修改~/.zshrc文件 alias cls='clear' alias ll='ls -l' ...

  9. Fiddler 修改响应内容

    1. 导入 FiddlerCore.dll 第三方库. 2. 开启侦听端口,FiddlerApplication.Startup(8888, FiddlerCoreStartupFlags.Defau ...

  10. go new() 和 make() 的区别

    看起来二者没有什么区别,都在堆上分配内存,但是它们的行为不同,适用于不同的类型. new(T) 为每个新的类型T分配一片内存,初始化为 0 并且返回类型为*T的内存地址:这种方法 返回一个指向类型为 ...