第K顺序统计量的求解
一个n个元素组成的集合中,第K个顺序统计量(Order Statistic)指的是该集合中第K小的元素,我们要讨论的是如何在线性时间(linear time)里找出一个数组的第K个顺序统计量。
一、问题描述
问题:给定一个含有n个元素的无序数组,找出第k小的元素。
- k = 1 :最小值
- k = n :最大值
- k = ⌊(n+1)/2⌋ or ⌈(n+1)/2⌉ :中位数
找最大值或最小值很简单,只需要遍历一次数组并记录下最大值或最小值就可以了。我们在这里要解决的问题是一般性的选择问题。
一种原始的解决方案是,用堆排序或归并排序将输入数据进行排序,然后返回第k个元素。这样在Θ(nlgn)时间内一定可以解决。但是我们希望有更好的方案,最好是线性时间。
二、期望线性时间的解决方案
为了在线性时间内解决这个选择问题,我们使用一个随机的分治算法,即RANDOMIZED-SELECT算法。此算法是使用随机化的快速排序中的随机划分子程序,对输入数组进行随机划分操作,然后判断第k小元素在划分后的哪个区域,对所在区域进行递归划分,最后找到第k小元素。
伪代码:
RANDOMIZED-SELECT(A,p,q,i) // i-th smallest in A[p..q]
if p = q
then return A[p]
r = RANDOMIZED-PARTITION(A, p, q)
k = r-p+1 // A[r] is k-th smallest
if i=k
then return A[r]
if i<k
then return RANDOMIZED-SELECT(A, p, r-1, i)
else
then return RANDOMIZED-SELECT(A, r+1, q, i-k)
这里的RANDOMIZED-PARTITION()是随机版的划分操作(快速排序的分析与优化),可见本算法是一个随机算法,它的期望时间是Θ(n)(假设元素的值是不同的)。
1、Lucky-Case:最好的情况是在正中划分,划分的右边和右边的元素数量相等,但是1/10和9/10的划分也几乎一样好。可以这么说,任何常数比例的划分都和1/2:1/2的划分一样好。这里以1/10和9/10的划分为例,算法运行时间递归式为T(n) <= T(9n/10) + Θ(n)
,根据主定理得到T(n) <= Θ(n)
。
2、Unlucky-Case:虽然主元的选取是随机的,但是如果你运气足够差,每次都得到0:n-1的划分,这就是最坏的情况。此时递归式为T(n) = T(n-1) + Θ(n)
,则时间复杂度为T(n) = Θ(n^2)
。
3、Expected-Time:期望运行时间为Θ(n),即线性时间。这里就不证明了,证明需要用到指示器随机变量。
C++代码:
/*************************************************************************
> File Name: RandomizedSelect.cpp
> Author: SongLee
> E-mail: lisong.shine@qq.com
> Created Time: 2014年06月22日 星期日 20时20分08秒
> Personal Blog: http://songlee24.github.com
************************************************************************/
#include<iostream>
#include<cstdlib> // srand rand
using namespace std; void swap(int &a, int &b)
{
int tmp = a;
a = b;
b = tmp;
} int Partition(int A[], int low, int high)
{
int pivot = A[low];
int i = low;
for(int j=low+1; j<=high; ++j)
{
if(A[j] <= pivot)
{
++i;
swap(A[i], A[j]);
}
}
swap(A[i], A[low]);
return i;
} int Randomized_Partition(int A[], int low, int high)
{
srand(time(NULL));
int i = rand() % (high+1);
swap(A[low], A[i]);
return Partition(A, low, high);
} int Randomized_Select(int A[], int p, int q, int i)
{
if(p == q)
return A[p];
int r = Randomized_Partition(A, p, q);
int k = r-p+1;
if(i == k)
return A[r];
if(i < k)
return Randomized_Select(A, p, r-1, i);
else
return Randomized_Select(A, r+1, q, i-k);
} /* 测试 */
int main()
{
int A[] = {6,10,13,5,8,3,2,11};
int i = 7;
int result = Randomized_Select(A, 0, 7, i);
cout << "The " << i << "th smallest element is " << result << endl;
return 0;
}
三、最坏情况线性时间的解决方案
虽然最坏情况Θ(n2)出现的概率非常非常小,但是不代表它不会出现。这里就介绍一个非同一般的算法,以保证在最坏情况下也能达到线性时间。
这个SELECT算法的基本思想就是要保证对数组的划分是一个好的划分,它通过自己的方法选取主元(pivot),然后将pivot作为参数传递给快速排序的确定性划分操作PARTITION。
基本步骤:
将输入数组的n个元素划分为n/5(上取整)组,每组5个元素,且至多只有一个组有剩下的n%5个元素组成。
寻找每个组织中中位数。首先对每组中的元素(至多为5个)进行插入排序,然后从排序后的序列中选择出中位数。
对第2步中找出的n/5(上取整)个中位数,递归调用SELECT以找出其中位数x。(如果是偶数取下中位数)
调用PARTITION过程,按照中位数x对输入数组进行划分。确定中位数x的位置k。
如果i=k,则返回x。否则,如果i < k,则在地区间递归调用SELECT以找出第i小的元素,若干i > k,则在高区找第(i-k)个最小元素。
总结:RANDOMIZED-SELECT和SELECT算法是基于比较的。我们知道,在比较模型中,排序时间不会优于Ω(nlgn)。之所以这里的选择算法达到了线性时间,是因为它们没有使用排序就解决了选择问题。另外,我们没有使用线性时间排序算法(计数排序/桶排序/基数排序),是因为它们要达到线性时间对输入有很高的要求,而这里不需要关于输入的任何假设。
第K顺序统计量的求解的更多相关文章
- 第K顺序统计量
1.第K顺序统计量概念 在一个由n个元素组成的集合中,第k个顺序统计量是该集合中第k小的元素.例如,最小值是第1顺序统计量,最大值是第n顺序统计量. 2.求Top K元素与求第K顺序统计量不同 Top ...
- 算法导论第九章 第K顺序统计量
1.第K顺序统计量概念 在一个由n个元素组成的集合中,第k个顺序统计量是该集合中第k小的元素.例如,最小值是第1顺序统计量,最大值是第n顺序统计量. 2.求Top K元素与求第K顺序统计量不同 Top ...
- 华为OJ2051-最小的K个数(Top K问题)
一.题目描述 描述: 输入n个整数,输出其中最小的k个. 输入: 输入 n 和 k 输入一个整数数组 输出: 输出一个整数数组 样例输入: 5 2 1 3 5 7 2 样例输出: 1 2 二.Top ...
- 【k短路&A*算法】BZOJ1975: [Sdoi2010]魔法猪学院
Description 找出1~k短路的长度. Solution k短路的求解要用到A*算法 A*算法的启发式函数f(n)=g(n)+h(n) g(n)是状态空间中搜索到n所花的实际代价 h(n) ...
- hdu 1588(矩阵好题+递归求解等比数列)
Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- 多目标跟踪笔记一:Finding the Best Set of K Paths Through a Trellis With Application to Multitarget Tracking
Abstract 本文提出一种寻找K最优路径的方法. k最优路径的定义:1.the sum of the metrics of all k paths in the set is minimized. ...
- Wannafly Camp 2020 Day 1I K小数查询 - 分块
给你一个长度为\(n\)序列\(A\),有\(m\)个操作,操作分为两种: 输入\(x,y,c\),表示对\(i\in[x,y]\),令\(A_{i}=min(A_{i},c)\) 输入\(x,y,k ...
- k短路算法
k短路算法 求解k短路用到了A* 算法,A* ( A star )算法,又称启发式搜索算法,与之相对的,dfs与bfs都成为盲目型搜索:即为带有估价函数的优先队列BFS称为A*算法. 该算法的核心思想 ...
- [笔记] $f(i)$ 为 $k$ 次多项式,$\sum_{i=0}^nf(i)\cdot q^i$ 的 $O(k\log k)$ 求法
\(f(i)\) 为 \(k\) 次多项式,\(\sum_{i=0}^nf(i)\cdot q^i\) 的 \(O(k\log k)\) 求法 令 \(S(n)=\sum_{i=0}^{n-1}f(i ...
随机推荐
- 08使用NanoPiM1Plus在Android4.4.2下接TF卡
08使用NanoPiM1Plus在Android4.4.2下接TF卡 大文实验室/大文哥 壹捌陆捌零陆捌捌陆捌贰 21504965 AT qq.com 完成时间:2017/12/5 17:51 版本: ...
- Android APK瘦身之webp图片
webp格式是谷歌推出的一种有损压缩格式,这种图片格式相比png或者jpg格式的图片损失的质量几乎可以忽略不计,但是压缩后图片的体积却比png或者jpg要小很多.亲测一个100kb的png图片经过we ...
- [Windows Server 2012] SQL Server 备份和还原方法
★ 欢迎来到[护卫神·V课堂],网站地址:http://v.huweishen.com ★ 护卫神·V课堂 是护卫神旗下专业提供服务器教学视频的网站,每周更新视频. ★ 本节我们将带领大家:SQL S ...
- 使用脚本快速线程转储及列出高cpu线程
jstack `ps -ef | grep java | grep bocai.jar | awk '{print $2}'` > cpu_high.logtop -b -n1 -Hp `ps ...
- 梦想CAD控件网页版搜索图面上的文字
在网页中查找到CAD控件图纸上的文字.点击此处在线演示. 主要用到函数说明: _DMxDrawX::NewSelectionSet 实例化一个构造选择集进行过滤,该类封装了选择集及其处理函数. _DM ...
- ThinkPHP---TP功能类之验证码
[一]验证码 验证码全称:captcha(全自动识别机器与人类的图灵测试),简单理解就是区分当前操作是人执行的还是机器执行的 常见验证码分3种:页面上图片形式.短信验证码(邮箱验证可以归类到短信验证码 ...
- [转载] Linux Futex的设计与实现
Linux Futex的设计与实现 引子 在编译2.6内核的时候,你会在编译选项中看到[*] Enable futex support这一项,上网查,有的资料会告诉你"不选这个内核不一定能正 ...
- PAT 1135 Is It A Red-Black Tree
There is a kind of balanced binary search tree named red-black tree in the data structure. It has th ...
- [bzoj4567][Scoi2016][背单词] (贪心+trie树)
Description Lweb 面对如山的英语单词,陷入了深深的沉思,“我怎么样才能快点学完,然后去玩三国杀呢?”.这时候睿智 的凤老师从远处飘来,他送给了 Lweb 一本计划册和一大缸泡椒,他的计 ...
- PID控制温度
总所周知,PID算法是个很经典的东西.而做自平衡小车,飞行器PID是一个必须翻过的坎.因此本节我们来好好讲解一下PID,根据我在学习中的体会,力求通俗易懂.并举出PID的形象例子来帮助理解PID.一. ...