pandas处理各类表格数据
经常遇到Python读取excel和csv还有其他各种文件的内容。json还有web端的读取还是比较简单,但是excel和csv的读写是很麻烦。这里记录了
pandas
库提供的方法来实现文本内容和DataFrame
的转化。
一、读取文本格式数据
首先来看一下针对不同格式的文件的读取函数:
总结一下常见参数:(例子见下面代码)
参数 | 作用 |
---|---|
sep | 指定分隔符,可以是正则表达式 |
header | 设置为None时处理没有header的文件 |
names | 指定列 |
index_col | 将列做成索引,可传入列表,可体现层次 |
skiprows | 跳过注释行 |
na_values | 接收表示缺失值的列表或字典 |
import pandas as pd
import numpy as np
import sys
import pymysql
df = pd.read_csv('ex1.csv')
print(df)
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
df = pd.read_table('ex1.csv',sep=',') #可以使用read_table,但必须指定分隔符
# sep还可以是正则表达式
print(df)
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
df = pd.read_csv('ex2.csv',header = None)#不是每一个csv都有header
print(df)
0 1 2 3 4
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
df = pd.read_csv('ex2.csv',names=['a','b','c','d','names'])#指定名字
print(df)
a b c d names
0 1 2 3 4 hello
1 5 6 7 8 world
2 9 10 11 12 foo
names=['a','b','c','d','names']
df = pd.read_csv('ex2.csv',names=names,index_col='names') #将names做成索引
print(df)
#names对应三个,abcd分别有对应的
a b c d
names
hello 1 2 3 4
world 5 6 7 8
foo 9 10 11 12
df = pd.read_csv('csv_mindex.csv')
print('原始样子:','\n',df)
df = pd.read_csv('csv_mindex.csv',index_col=['keys','key2'])
#层次化索引.
#请注意keys和key2的顺序
print(df)
原始样子:
keys key2 value1 value2
0 one a 1 2
1 one b 3 4
2 two a 9 10
3 two c 13 14
value1 value2
keys key2
one a 1 2
b 3 4
two a 9 10
c 13 14
df = pd.read_csv('ex4.csv')
print('原始样子:','\n',df)
#跳过文件的第几行
print()
df = pd.read_csv('ex4.csv',skiprows=[0,2])
print(df)
原始样子:
# hey!
a b c d message
# just wanted to make things more difficult NaN NaN NaN NaN
1 2 NaN 4 hello
a b c d message
0 1 2 NaN 4 hello
pd.isnull(df)# 处理缺失值
df = pd.read_csv('ex4.csv',skiprows=[0,2],na_values=['hello'])# 接收一组用于表示缺失值的字符串
print(df)
print(pd.isnull(df))
a b c d message
0 1 2 NaN 4 NaN
a b c d message
0 False False True False True
sentinels = {'message':['foo','NA'],'d':['a','NaN']}# 用一个字典为各列指定不同的NA标记值
df = pd.read_csv('ex4.csv',skiprows=[0,2],na_values=sentinels)
print(df)
a b c d message
0 1 2 NaN 4 hello
这里,给出了更详细的参数情况:
二、逐块读取文本文件
这里还是参数的调整问题。由于参数过少,这里不做统一整理。
# nrows参数指定只读取定行。算上第一行哦
pd.read_csv('ex1.csv',nrows=4)
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
a | b | c | d | message | |
---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | hello |
1 | 5 | 6 | 7 | 8 | world |
2 | 9 | 10 | 11 | 12 | foo |
# chunksize 指定分块读取
chunks = pd.read_csv('ex1.csv',chunksize=2)
print(chunks)
<pandas.io.parsers.TextFileReader object at 0x0000007D7E4A39B0>
for chunk in chunks:
print(chunk)
print('='*10,)
a b c d message
0 1 2 3 4 hello
1 5 6 7 8 world
==========
a b c d message
2 9 10 11 12 foo
==========
三、将数据写出到文本格式
data = pd.read_csv('ex1.csv',nrows=3)
data.to_csv('ex1_1.csv') #to_csv写入
data.to_csv('ex1_2.csv',sep='|')# 别的分隔符
data.to_csv('ex1_1.csv',na_rep='NULL')# 缺失值会被替换为na_rep
data.to_csv(sys.stdout,index=False,header=False)
# 行、列标签被禁止
# 输出到控制台
1,2,3,4,hello
5,6,7,8,world
9,10,11,12,foo
data.to_csv(sys.stdout,index=False,columns=['a','b'])
a,b
1,2
5,6
9,10
data.to_csv(sys.stdout)
,a,b,c,d,message
0,1,2,3,4,hello
1,5,6,7,8,world
2,9,10,11,12,foo
四、DataFrame和数据库
# 可以将json格式的数据传给DataFreame
# 也可以数据将数据库的rows传给DataFrame
conn = pymysql.Connect(host='172.31.238.166',port=3306,user='luowang',passwd='root',\
charset='UTF8',db='dyx')
cursor=conn.cursor()
sql='select * from access_log';
cursor.execute(sql)
rows= cursor.fetchall()
print(cursor.description)
(('aid', 3, None, 16, 16, 0, False), ('site_id', 3, None, 16, 16, 0, False), ('count', 3, None, 32, 32, 0, False))
# cursor.description第一个保存了列的信息
# pd.DataFrame(rows,columns=[i[0] for i in cursor.description])
pd.DataFrame(list(rows),columns=[i[0] for i in cursor.description]) #rows必须是list类型
.dataframe thead tr:only-child th {
text-align: right;
}
.dataframe thead th {
text-align: left;
}
.dataframe tbody tr th {
vertical-align: top;
}
aid | site_id | count | |
---|---|---|---|
0 | 1 | 1 | 45 |
1 | 2 | 3 | 100 |
2 | 3 | 1 | 230 |
3 | 4 | 2 | 10 |
4 | 5 | 5 | 205 |
5 | 6 | 4 | 13 |
6 | 7 | 3 | 220 |
7 | 8 | 5 | 545 |
8 | 9 | 3 | 201 |
9 | 10 | 10 | 10 |
10 | 11 | 11 | 11 |
欢迎进一步交流本博文相关内容:
博客园地址 : http://www.cnblogs.com/AsuraDong/
CSDN地址 : http://blog.csdn.net/asuradong
也可以致信进行交流 : xiaochiyijiu@163.com
欢迎关注个人微博:http://weibo.com/AsuraDong
欢迎转载 , 但请指明出处 : )
pandas处理各类表格数据的更多相关文章
- 使用pandas中的raad_html函数爬取TOP500超级计算机表格数据并保存到csv文件和mysql数据库中
参考链接:https://www.makcyun.top/web_scraping_withpython2.html #!/usr/bin/env python # -*- coding: utf-8 ...
- 利用 pandas库读取excel表格数据
利用 pandas库读取excel表格数据 初入IT行业,愿与大家一起学习,共同进步,有问题请指出!! 还在为数据读取而头疼呢,请看下方简洁介绍: 数据来源为国家统计局网站下载: 具体方法 代码: i ...
- Python使用Tabula提取PDF表格数据
今天遇到一个批量读取pdf文件中表格数据的需求,样式大体是以下这样: python读取PDF无非就是三种方式(我所了解的),pdfminer.pdf2htmlEX 和 Tabula.综合考虑后,选择了 ...
- pandas读取各类sql数据源
大数据分析中,我们经常需要使用pandas工具读取各类数据源并将结果保存到数据库中. 本文总结了一些读取和写入常用数据库数据的一些方法,包括mysql,oracle,impala等. 其中读取数据库数 ...
- 另类爬虫:从PDF文件中爬取表格数据
简介 本文将展示一个稍微不一样点的爬虫. 以往我们的爬虫都是从网络上爬取数据,因为网页一般用HTML,CSS,JavaScript代码写成,因此,有大量成熟的技术来爬取网页中的各种数据.这次, ...
- @1-5使用pandas保存豆瓣短评数据
使用pandas保存豆瓣短评数据 Python爬虫(入门+进阶) DC学院 本节课程的内容是介绍open函数和pandas两种保存已爬取的数据的方法,并通过实际例子使用pandas保存数据. ...
- 利用Python进行数据分析-Pandas(第五部分-数据规整:聚合、合并和重塑)
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本部分关注可以聚合.合并.重塑数据的方法. 1.层次化索引 层次化索引(hierarchical indexing)是panda ...
- 利用pandas读取Excel表格,用matplotlib.pyplot绘制直方图、折线图、饼图
利用pandas读取Excel表格,用matplotlib.pyplot绘制直方图.折线图.饼图 数据: 折线图代码: import pandas as pdimport matplotlib. ...
- 实操 | 内存占用减少高达90%,还不用升级硬件?没错,这篇文章教你妙用Pandas轻松处理大规模数据
注:Pandas(Python Data Analysis Library) 是基于 NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.此外,Pandas 纳入了大量库和一些标准的数据模型 ...
随机推荐
- bzoj4264
哈希 cf原题...没见过的话真想不出来 将邻接表排序哈希,判断是否相同,但是会漏掉两点相邻的情况,于是再把自己加入自己的邻接表,然后再哈希判断. #include<bits/stdc++.h& ...
- java笔记线程两种方式模拟电影院卖票
public class SellTicketDemo { public static void main(String[] args) { // 创建三个线程对象 SellTicket st1 = ...
- webservice 权限控制
webservice 如何限制访问,权限控制?1.服务器端总是要input消息必须携带用户名.密码信息 如果不用cxf框架,SOAP消息(xml片段)的生成.解析都是有程序员负责 2.拦截器 为了让程 ...
- Net 发布网站中遇到的几点问题
1.windows 身份验证设置 打开IIS==>=>找到网站==> 身份验证==>打开功能==>启用windows身份验证 网站设置: 博客参考: http://blo ...
- 403 Frog Jump 青蛙过河
一只青蛙想要过河. 假定河流被等分为 x 个单元格,并且在每一个单元格内都有可能放有一石子(也有可能没有). 青蛙可以跳上石头,但是不可以跳入水中.给定石子的位置列表(用单元格序号升序表示), 请判定 ...
- ibatis入门教程一
这几天研究ibatis玩,参考一篇贴子进行安装配置:蓝雪森林 选择这个帖子来跟随配置是因为这个帖子看着比较干净,但是我仍旧在配置得过程中出现了好几个问题,所以我决定在这个帖子的基础上将更多细节加上,做 ...
- 网站开发综合技术 一 JavaScript简介 二JavaScript语法
第1部分 JavaScript简介 1.JavaScript它是个什么东西? 它是个脚本语言,需要有宿主文件,他的宿主文件是html文件. 2.它与Java有什么关系? 没有什么直接联系,java是S ...
- 重新学习Java——Java基本的程序设计结构(一)
最近在实验室看到各位学长忙于找工作的面试与笔试,深感自己的不足,决定重新好好学习一下<Java核心技术>这本书,曾经靠这本书走入Java的世界,但是也有很多的地方被我疏漏过去了,因此也是作 ...
- Font Awesome 图标使用总结
参考 http://fontawesome.dashgame.com/ 1 大图标递进 fa-lg (33%递增).fa-2x. fa-3x.fa-4x,或者 fa-5x 2 固定宽度 fa-f ...
- 介绍Git的17条基本用法
本文将介绍Git的17条基本用法.本文选自<Python全栈开发实践入门>. 1.初始化Git仓库 Git仓库分为两种类型:一种是存放在服务器上面的裸仓库,里面没有保存文件,只是存放.gi ...