bzoj 4557: [JLoi2016]侦察守卫【树形dp】
设f[u][i]为u点向下覆盖至少i层并且处理完u的子树的最小代价,f[u][i]为u点向上覆盖至少i层并且处理完u的子树的最小代价
转移的话显然f[u][i]+=f[v][i-1],但是f[u][0]不好确定,可以知道f[u][0]=g[u][0],而g的转移是g[u][j]=min(g[u][j]+f[e[i].to][j],f[u][j+1]+g[e[i].to][j+1]),所以就可以求了
#include<iostream>
#include<cstdio>
using namespace std;
const int N=500005;
int n,d,m,a[N],h[N],cnt,f[N][25],g[N][25];
bool v[N];
struct qwe
{
int ne,to;
}e[N<<1];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void dfs(int u,int fa)
{
f[u][0]=g[u][0]=v[u]?a[u]:0;
for(int i=1;i<=d;i++)
g[u][i]=a[u];
g[u][d+1]=1e9;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa)
{
dfs(e[i].to,u);
for(int j=0;j<=d;j++)
g[u][j]=min(g[u][j]+f[e[i].to][j],f[u][j+1]+g[e[i].to][j+1]);
for(int j=d;j>=0;j--)
g[u][j]=min(g[u][j],g[u][j+1]);
f[u][0]=g[u][0];
for(int j=1;j<=d;j++)
f[u][j]+=f[e[i].to][j-1];
for(int j=1;j<=d;j++)
f[u][j]=min(f[u][j],f[u][j-1]);
}
}
int main()
{
n=read(),d=read();//cerr<<n<<" "<<d<<endl;
for(int i=1;i<=n;i++)
a[i]=read();
m=read();
for(int i=1;i<=m;i++)
v[read()]=1;
for(int i=1;i<n;i++)
{
int x=read(),y=read();
add(x,y),add(y,x);
}
dfs(1,0);
printf("%d\n",f[1][0]);
return 0;
}
bzoj 4557: [JLoi2016]侦察守卫【树形dp】的更多相关文章
- bzoj 4557: [JLoi2016]侦察守卫 树归
bzoj 4557: [JLoi2016]侦察守卫 设f[x][j]表示覆盖以x为根的子树的所有应该被覆盖的节点,并且以x为根的子树向下j层全部被覆盖的最小代价. 设g[x][j]表示与x距离大于j全 ...
- [BZOJ4557][JLOI2016]侦察守卫(树形DP)
首先可以确定是树形DP,但这里存在跨子树的信息传递问题,这里就需要“借”的思想. f[i][j]表示i子树内所有点都被覆盖到,且i以外j层内的点都能被覆盖到 的方案数. g[i][j]表示i子树内离i ...
- 【BZOJ4557】[JLoi2016]侦察守卫 树形DP
[BZOJ4557][JLoi2016]侦察守卫 Description 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地 ...
- BZOJ 4557: [JLoi2016]侦察守卫
题目大意:每个点有一个放置守卫的代价,同时每个点放置守卫能覆盖到的距离都为d,问覆盖所有给定点的代价是多少. 题解: 树形DP f[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上覆盖y层的最 ...
- 4557: [JLoi2016]侦察守卫
4557: [JLoi2016]侦察守卫 链接 分析: 因为D比较小,所设状态f[i][j]表示子树i内,从i往下第j层及第j层以下都覆盖了的最小代价,g[i][j]表示覆盖完子树内所有点,还可以往上 ...
- Bzoj 1131[POI2008]STA-Station (树形DP)
Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...
- BZOJ 4557 JLOI2016 侦查守卫 树形dp
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 题意概述: 给出一棵树,每个点付出代价w[i]可以控制距离和它不超过d的点,现在给 ...
- 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)
题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...
- BZOJ 4726: [POI2017]Sabota? 树形dp
4726: [POI2017]Sabota? 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4726 Description 某个公司有n ...
随机推荐
- 嵌入式学习笔记(综合提高篇 第二章) -- FreeRTOS的移植和应用
1.1 资料准备和分析 上章节通过实现双机通讯,了解如何设计和实现自定义协议,不过对于嵌入式系统来说,当然不仅仅包含协议,还有其它很多需要深入学习了解的知识,下面将列出我在工作和学习上遇到的嵌入 ...
- 未来 5 年八大热门 IT 职业
近日.外媒梳理了未来5年内.也是就是2020年仍将受到热捧的八大科技领域,为IT从业者怎样做好长远规划.有针对性地培养自身技能.又不偏离热门岗位提供了參考. (图片来自网易) 2020年将热门的8大I ...
- linux i2c 标准接口(二)
驱动程序操作法:i2c设备的驱动也可以通过普通的设备驱动实现,像往常的驱动一样实现,然后在应用层就可以像读取普通文件一样操作,无需再考虑读写时序.其实普通的设备驱动也可以用两种方法实现, 1)构建字符 ...
- HDU 6155 Subsequence Count 线段树维护矩阵
Subsequence Count Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 256000/256000 K (Java/Oth ...
- (28)java web的hibernate使用
Hibernate是一个开放源代码的对象关系映射框架,它对JDBC进行了非常轻量级的对象封装,它将POJO与数据库表建立映射关系,是一个全自动的orm框架,hibernate可以自动生成SQL语句,自 ...
- Linux时间子系统之三:时间的维护者:timekeeper【转】
本文转载自:http://blog.csdn.net/droidphone/article/details/7989566 本系列文章的前两节讨论了用于计时的时钟源:clocksource,以及内核内 ...
- vfork函数的使用【学习笔记】
#include "apue.h" ; int main(void) { int var; pid_t pid; ; printf("before vfork\r\n&q ...
- Linux下配置rsync服务器
一.简介 rsync是一个远程数据同步工具,可以快速同步多台主机间的文件.Rsync使用所谓的“Rsync算法”来使本地和远程两个主机之间的文件达到同步,这个算法只传送两个文件的不同部分,而不是每次都 ...
- 没有该栏目数据可能缓存文件(data/cache/inc_catalog_base.inc)没有更新请检查是否有写入权限
dedecms系统搬家后或在系统还原后,重新更新栏目或文件的时候,有时会出现这样的错误提示:没有该栏目数据可能缓存文件(data/cache/inc_catalog_base.inc)没有更新请检查是 ...
- linux初级学习笔记十:linux grep及正则表达式!(视频序号:04_4)
本节学习的命令:grep 本节学习的技能: grep对文本的匹配 正则表达式的使用 知识点十:grep及正则表达式(4_4) grep,egrep,fgrep: grep: 根据模式搜索文本,并将符合 ...