设f[u][i]为u点向下覆盖至少i层并且处理完u的子树的最小代价,f[u][i]为u点向上覆盖至少i层并且处理完u的子树的最小代价

转移的话显然f[u][i]+=f[v][i-1],但是f[u][0]不好确定,可以知道f[u][0]=g[u][0],而g的转移是g[u][j]=min(g[u][j]+f[e[i].to][j],f[u][j+1]+g[e[i].to][j+1]),所以就可以求了

#include<iostream>
#include<cstdio>
using namespace std;
const int N=500005;
int n,d,m,a[N],h[N],cnt,f[N][25],g[N][25];
bool v[N];
struct qwe
{
int ne,to;
}e[N<<1];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void dfs(int u,int fa)
{
f[u][0]=g[u][0]=v[u]?a[u]:0;
for(int i=1;i<=d;i++)
g[u][i]=a[u];
g[u][d+1]=1e9;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa)
{
dfs(e[i].to,u);
for(int j=0;j<=d;j++)
g[u][j]=min(g[u][j]+f[e[i].to][j],f[u][j+1]+g[e[i].to][j+1]);
for(int j=d;j>=0;j--)
g[u][j]=min(g[u][j],g[u][j+1]);
f[u][0]=g[u][0];
for(int j=1;j<=d;j++)
f[u][j]+=f[e[i].to][j-1];
for(int j=1;j<=d;j++)
f[u][j]=min(f[u][j],f[u][j-1]);
}
}
int main()
{
n=read(),d=read();//cerr<<n<<" "<<d<<endl;
for(int i=1;i<=n;i++)
a[i]=read();
m=read();
for(int i=1;i<=m;i++)
v[read()]=1;
for(int i=1;i<n;i++)
{
int x=read(),y=read();
add(x,y),add(y,x);
}
dfs(1,0);
printf("%d\n",f[1][0]);
return 0;
}

bzoj 4557: [JLoi2016]侦察守卫【树形dp】的更多相关文章

  1. bzoj 4557: [JLoi2016]侦察守卫 树归

    bzoj 4557: [JLoi2016]侦察守卫 设f[x][j]表示覆盖以x为根的子树的所有应该被覆盖的节点,并且以x为根的子树向下j层全部被覆盖的最小代价. 设g[x][j]表示与x距离大于j全 ...

  2. [BZOJ4557][JLOI2016]侦察守卫(树形DP)

    首先可以确定是树形DP,但这里存在跨子树的信息传递问题,这里就需要“借”的思想. f[i][j]表示i子树内所有点都被覆盖到,且i以外j层内的点都能被覆盖到 的方案数. g[i][j]表示i子树内离i ...

  3. 【BZOJ4557】[JLoi2016]侦察守卫 树形DP

    [BZOJ4557][JLoi2016]侦察守卫 Description 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点,且地图是连通的.换句话说,游戏的地 ...

  4. BZOJ 4557: [JLoi2016]侦察守卫

    题目大意:每个点有一个放置守卫的代价,同时每个点放置守卫能覆盖到的距离都为d,问覆盖所有给定点的代价是多少. 题解: 树形DP f[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上覆盖y层的最 ...

  5. 4557: [JLoi2016]侦察守卫

    4557: [JLoi2016]侦察守卫 链接 分析: 因为D比较小,所设状态f[i][j]表示子树i内,从i往下第j层及第j层以下都覆盖了的最小代价,g[i][j]表示覆盖完子树内所有点,还可以往上 ...

  6. Bzoj 1131[POI2008]STA-Station (树形DP)

    Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...

  7. BZOJ 4557 JLOI2016 侦查守卫 树形dp

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 题意概述: 给出一棵树,每个点付出代价w[i]可以控制距离和它不超过d的点,现在给 ...

  8. 洛谷 P3267 [JLOI2016/SHOI2016]侦察守卫(树形dp)

    题面 luogu 题解 树形\(dp\) \(f[x][y]表示x的y层以下的所有点都已经覆盖完,还需要覆盖上面的y层的最小代价.\) \(g[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上 ...

  9. BZOJ 4726: [POI2017]Sabota? 树形dp

    4726: [POI2017]Sabota? 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4726 Description 某个公司有n ...

随机推荐

  1. 【Objective-C】09-空指针和野指针

    一.什么是空指针和野指针 1.空指针 1> 没有存储不论什么内存地址的指针就称为空指针(NULL指针) 2> 空指针就是被赋值为0的指针.在没有被详细初始化之前.其值为0. 以下两个都是空 ...

  2. poj 2154 Color 欧拉函数优化的ploya计数

    枚举位移肯定超时,对于一个位移i.我们须要的是它的循环个数,也就是gcd(i,n),gcd(i,n)个数肯定不会非常多,由于等价于n的约数的个数. 所以我们枚举n的约数.对于一个约数k,也就是循环个数 ...

  3. 使用string实现一个用于储存那些太大而无法使用 long long 的数

    类的定义: class stringInt { public: stringInt(); stringInt(string num); stringInt(int num); stringInt op ...

  4. java设计模式----其他模式

    1.桥接:使用桥接模式不只改变你的实现,也改变你的抽象 优点: 将实现予以解耦,让它和界面之间不再永久绑定 抽象和实现可以独立扩展,不会影响到对方 对于“具体的抽象类”所做的改变,不会影响到客户 用途 ...

  5. LeetCode(3)题解: Longest Palindromic Substring

    https://leetcode.com/problems/longest-palindromic-substring/ 题目: Given a string S, find the longest ...

  6. hadoop eclipse插件生成

    hadoop eclipse插件生成 做了一年的hadoop开发.还没有自动生成过eclipse插件,一直都是在网上下载别人的用,今天有时间,就把这段遗憾补回来,自己生成一下,废话不说,開始了. 本文 ...

  7. Android 实例解说加入本地图片和调用系统拍照图片

    在项目的开发过程我们离不开图片.而有时候须要调用本地的图片,有时候须要调用拍照图片.同一时候实现拍照的方法有两种,一种是调用系统拍照功能.还有一种是自己定义拍照功能. 而本博文眼下仅仅解说第一种方法, ...

  8. python day - 19 抽象类 接口类 多态 封装

    一. 抽象类接口类即制定一个规范 特点: 1.不可被实例化. 2.规范子类当中必须事先某个方法. 3.在python中有原生实现抽象类的方法,但没有原生实现接口类的方法. 例题:制定一个规范就是,子类 ...

  9. 更改NavigationView侧滑菜单文字颜色

    NavigationView menu默认icon和title会随着菜单状态改变而改变,选择某个菜单后再次打开侧边菜单后会发现该菜单的icon和title会变成应用的主颜色,其他菜单项仍然为黑色. 如 ...

  10. POJ - 2142 The Balance(扩展欧几里得求解不定方程)

    d.用2种砝码,质量分别为a和b,称出质量为d的物品.求所用的砝码总数量最小(x+y最小),并且总质量最小(ax+by最小). s.扩展欧几里得求解不定方程. 设ax+by=d. 题意说不定方程一定有 ...