poj 1186 方程的解数【折半dfs+hash】
折半搜索,map会T所以用hash表来存状态
#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=10,mod=739391;
int n,m,k[N],p[N],w,a[155][N],h[1000005],cnt;
long long ans;
map<int,int>mp;
struct qwe
{
int ne,to,va;
}e[4000005];
void update(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod,fl=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
{
e[i].va++;//cerr<<e[i].va<<endl;
fl=1;
break;
}
if(!fl)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=x;
e[cnt].va=1;
h[u]=cnt;
}
}
int ques(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
return e[i].va;
return 0;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
void dfs(int w,int v)
{
if(!w)
{
update(v);
return;
}
for(int i=1;i<=m;i++)
dfs(w-1,v+k[w]*a[i][w]);
}
void dfs2(int w,int v)
{
if(!w)
{
ans+=ques(-v);
return;
}
for(int i=1;i<=m;i++)
dfs2(w-1,v+k[n-w+1]*a[i][n-w+1]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d%d",&k[i],&p[i]);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
a[i][j]=ksm(i,p[j]);
int w=n/2;
dfs(w,0);
dfs2(n-w,0);
printf("%lld\n",ans);
return 0;
}
poj 1186 方程的解数【折半dfs+hash】的更多相关文章
- POJ 1186 方程的解数
方程的解数 Time Limit: 15000MS Memory Limit: 128000K Total Submissions: 6188 Accepted: 2127 Case Time ...
- 计蒜客 方程的解数(DFS)
问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #i ...
- Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)
目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
- NOI2001 方程的解数
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛 时间限制: 5 s 空间限制: 64000 KB 题目描述 Descripti ...
- [ NOI 2001 ] 方程的解数
\(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...
- cogs 304. [NOI2001] 方程的解数(meet in the middle)
304. [NOI2001] 方程的解数 ★★☆ 输入文件:equation1.in 输出文件:equation1.out 简单对比时间限制:3 s 内存限制:64 MB 问题描述 已 ...
- P5691 [NOI2001]方程的解数
题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...
- CH 2401 - 送礼 - [折半DFS+二分]
题目链接:传送门 描述 作为惩罚,GY被遣送去帮助某神牛给女生送礼物(GY:貌似是个好差事)但是在GY看到礼物之后,他就不这么认为了.某神牛有N个礼物,且异常沉重,但是GY的力气也异常的大(-_-b) ...
随机推荐
- 自己定义html中a标签的title提示tooltip
自己定义html中a标签的title提示tooltip 简单介绍 用简单的jquery+CSS创建自己定义的a标签title提示,用来取代浏览器默认行为.如图: watermark/2/text/aH ...
- Bean property XX' is not writable or has an invalid setter method
刚刚搞spring.property注入时遇到这个问题,百度一下.非常多人说是命名或者get set方法不一致的问题,可是这个我是知道的.写的时候也注意到这些.所以应该不是这个问题.以为是xml头写的 ...
- 【转载】.NET Remoting学习笔记(二)激活方式
目录 .NET Remoting学习笔记(一)概念 .NET Remoting学习笔记(二)激活方式 .NET Remoting学习笔记(三)信道 参考:百度百科 ♂风车车.Net 激活方式概念 在访 ...
- 使用string实现一个用于储存那些太大而无法使用 long long 的数
类的定义: class stringInt { public: stringInt(); stringInt(string num); stringInt(int num); stringInt op ...
- BoW(SIFT/SURF/...)+SVM/KNN的OpenCV 实现
本文转载了文章(沈阳的博客),目的在于记录自己重复过程中遇到的问题,和更多的人分享讨论. 程序包:猛戳我 物体分类 物体分类是计算机视觉中一个很有意思的问题,有一些已经归类好的图片作为输入,对一些未知 ...
- iGrimaceVX3.0和1.44在线源手机直接安装教程
[第一步] 先安装好三个组件设备必须是苹果越狱好后 确定6点几跟7点几的版本号才干够 首先打开cydia 选开发人员 以下 点软件源 点右上角编辑 1加入源 apt.25pp.com和IG包下载源a ...
- 查询历史使用过的命令并使用(history)
一.什么是history 在bash功能中.它能记忆使用过的命令,这个功能最大的优点就是能够查询以前做过的举动.从而能够知道你的执行步骤.那么就能够追踪你曾下达过的命令.以作为除错的工具. 二.His ...
- LeetCode(27)题解:Remove Element
https://leetcode.com/problems/remove-element/ Given an array and a value, remove all instances of th ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- Android开发之开机自动启动应用
package com.raycloud.wolf.autostart; import android.content.BroadcastReceiver; import android.conten ...