折半搜索,map会T所以用hash表来存状态

#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=10,mod=739391;
int n,m,k[N],p[N],w,a[155][N],h[1000005],cnt;
long long ans;
map<int,int>mp;
struct qwe
{
int ne,to,va;
}e[4000005];
void update(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod,fl=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
{
e[i].va++;//cerr<<e[i].va<<endl;
fl=1;
break;
}
if(!fl)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=x;
e[cnt].va=1;
h[u]=cnt;
}
}
int ques(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
return e[i].va;
return 0;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
void dfs(int w,int v)
{
if(!w)
{
update(v);
return;
}
for(int i=1;i<=m;i++)
dfs(w-1,v+k[w]*a[i][w]);
}
void dfs2(int w,int v)
{
if(!w)
{
ans+=ques(-v);
return;
}
for(int i=1;i<=m;i++)
dfs2(w-1,v+k[n-w+1]*a[i][n-w+1]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d%d",&k[i],&p[i]);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
a[i][j]=ksm(i,p[j]);
int w=n/2;
dfs(w,0);
dfs2(n-w,0);
printf("%lld\n",ans);
return 0;
}

poj 1186 方程的解数【折半dfs+hash】的更多相关文章

  1. POJ 1186 方程的解数

    方程的解数 Time Limit: 15000MS   Memory Limit: 128000K Total Submissions: 6188   Accepted: 2127 Case Time ...

  2. 计蒜客 方程的解数(DFS)

    问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #i ...

  3. Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)

    目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...

  4. 计蒜客 方程的解数 dfs

    题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...

  5. NOI2001 方程的解数

    1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛  时间限制: 5 s  空间限制: 64000 KB     题目描述 Descripti ...

  6. [ NOI 2001 ] 方程的解数

    \(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...

  7. cogs 304. [NOI2001] 方程的解数(meet in the middle)

    304. [NOI2001] 方程的解数 ★★☆   输入文件:equation1.in   输出文件:equation1.out   简单对比时间限制:3 s   内存限制:64 MB 问题描述 已 ...

  8. P5691 [NOI2001]方程的解数

    题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...

  9. CH 2401 - 送礼 - [折半DFS+二分]

    题目链接:传送门 描述 作为惩罚,GY被遣送去帮助某神牛给女生送礼物(GY:貌似是个好差事)但是在GY看到礼物之后,他就不这么认为了.某神牛有N个礼物,且异常沉重,但是GY的力气也异常的大(-_-b) ...

随机推荐

  1. 走入asp.net mvc不归路:[3]创建控制器

    实际上,控制器就是一个类,一个继承自Controller的类.正常创建一个Controller即可,而问题在于asp.net mvc提供了一套便捷的方法,在创建一个Controller时,可以自动创建 ...

  2. C#语言基础语句

    case,switch,break的使用 Console.WriteLine("1.汉堡"); Console.WriteLine("2.薯条"); Conso ...

  3. Intel的东进与ARM的西征(5)--智慧的大窗口,我们都在画里面

    http://www.36kr.com/p/200168.html 繁华又算得了什么,不过是星尘的崩碎,那一抹青青的灰.公元 79 年,意大利维苏威火山喷发,已然兴盛了 600 年的庞贝古城被完全湮没 ...

  4. DOM编程 --《高性能JavaScript》

    1.重绘和重排 浏览器下载完页面的所有组件 —— HTML标记,CSS,JavaScript,图片,会解析并生成两个内部数据结构. DOM树 表示页面结构 渲染树(CSS) 表示DOM节点如何显示 当 ...

  5. python实现斐波那契查找

    通过在网上找教程解释和看书,总结出一套比较简单易懂的代码实现. 斐波那契查找和二分查找一样,针对的是有序序列,在此前提下: # 先创建一个Fibonacci函数 fib = lambda n: n i ...

  6. java的nio包的SelectionKey,Selector,SelectableChannel三者的缠绵关系概述

    猛击这里 java的nio包的SelectionKey,Selector,SelectableChannel三者的缠绵关系概述

  7. 2016/07/05 zend optimizer

    Zend Optimizer是由PHP核心引擎“Zend” http://www.zend.com 创建者Zend技术公司所开的免费PHP优化软件.据Zend公司透露使用这个软件某些情况下至少可以提高 ...

  8. Java程序员从笨鸟到菜鸟之(十五)Html基础积累总结(下)

     本文来自:曹胜欢博客专栏.转载请注明出处:http://blog.csdn.net/csh624366188 一:表格 1.表格的基本语法 <table>...</table> ...

  9. Axure Base 08 动态面板的用途

    写了几个Axure教程之后发现,可能教程的起点有些高了,过分的去讲效果的实现,而忽略了axure功能以及基础元件的使用,那么从这个教程开始,把这些逐渐的展开讲解. 关于动态面板 动态面板是axure原 ...

  10. pyenv 安装本地版本

    最近在用pyenv安装python的时候发现官网特别慢,经常出现拒绝访问的情况.看了一些解决方法,发现可以使用本地的python源码进行安装,让pyenv从本地下载就可以了~步骤如下: 首先从官网下载 ...