poj 1186 方程的解数【折半dfs+hash】
折半搜索,map会T所以用hash表来存状态
#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=10,mod=739391;
int n,m,k[N],p[N],w,a[155][N],h[1000005],cnt;
long long ans;
map<int,int>mp;
struct qwe
{
int ne,to,va;
}e[4000005];
void update(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod,fl=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
{
e[i].va++;//cerr<<e[i].va<<endl;
fl=1;
break;
}
if(!fl)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=x;
e[cnt].va=1;
h[u]=cnt;
}
}
int ques(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
return e[i].va;
return 0;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
void dfs(int w,int v)
{
if(!w)
{
update(v);
return;
}
for(int i=1;i<=m;i++)
dfs(w-1,v+k[w]*a[i][w]);
}
void dfs2(int w,int v)
{
if(!w)
{
ans+=ques(-v);
return;
}
for(int i=1;i<=m;i++)
dfs2(w-1,v+k[n-w+1]*a[i][n-w+1]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d%d",&k[i],&p[i]);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
a[i][j]=ksm(i,p[j]);
int w=n/2;
dfs(w,0);
dfs2(n-w,0);
printf("%lld\n",ans);
return 0;
}
poj 1186 方程的解数【折半dfs+hash】的更多相关文章
- POJ 1186 方程的解数
方程的解数 Time Limit: 15000MS Memory Limit: 128000K Total Submissions: 6188 Accepted: 2127 Case Time ...
- 计蒜客 方程的解数(DFS)
问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #i ...
- Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)
目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
- NOI2001 方程的解数
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛 时间限制: 5 s 空间限制: 64000 KB 题目描述 Descripti ...
- [ NOI 2001 ] 方程的解数
\(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...
- cogs 304. [NOI2001] 方程的解数(meet in the middle)
304. [NOI2001] 方程的解数 ★★☆ 输入文件:equation1.in 输出文件:equation1.out 简单对比时间限制:3 s 内存限制:64 MB 问题描述 已 ...
- P5691 [NOI2001]方程的解数
题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...
- CH 2401 - 送礼 - [折半DFS+二分]
题目链接:传送门 描述 作为惩罚,GY被遣送去帮助某神牛给女生送礼物(GY:貌似是个好差事)但是在GY看到礼物之后,他就不这么认为了.某神牛有N个礼物,且异常沉重,但是GY的力气也异常的大(-_-b) ...
随机推荐
- 杭电1708Fibonacci String
Fibonacci String Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- 将世界坐标转成NGUI坐标
将世界坐标转成NGUI坐标,这个中间须要一个屏幕坐标,可參考例如以下代码: /// <summary> /// 将世界坐标转成UI坐标 /// </summary> /// & ...
- java开始到熟悉61
本此主题:多维数组----矩阵运算 矩阵的运算规则是将对应位置的值进行运算,如上图所示. package array; public class Matrix { /** * 打印矩阵 * @para ...
- fill函数和fill_n函数
fill_n函数的作用是:给你一个起始点,然后再给你一个数值count和val.把从起始点开始依次赋予count个元素val的值. 注意: 不能在没有元素的空容器上调用fill_n函数 列子: ...
- 算法和流程控制 --《高性能JavaScript》
总结: 1.for, while, do-while循环性能相当,并没有一种循环类型明显快于或满于其他类型. 2.避免使用for-in循环,除非要遍历一个属性数量未知的对象. 3.改善循环性能的最佳形 ...
- React Native安装
1.安装 1.1 安装Node.js 下载安装即可 1.2 安装Homebrew 终端中执行: $ /usr/bin/ruby -e "$(curl -fsSL https://raw.gi ...
- ADO直接调用ACESS数据库MDB
1.ADO用ODBC链接不会出现堆栈溢出. 2.直接用ADO链接,因为对象不是NEW出来的,导致其成员变量也是栈上的,数组申请过大,栈溢出. 用VECTOR或者NEW对象,应该能解决.
- 增加实时性的异常url检测
技能点: 搭建服务器.restfulapi 在py脚本中调取另一个脚本执行
- proc_create的使用方法
proc_create的使用方法 proc文件系统是个有用的东东.创建一个proc虚拟文件,应用层通过读写该文件,即可实现与内核的交互.proc虚拟文件是如何创建的呢? 先看看比较简单的,创建proc ...
- umask文件屏蔽字的使用【学习笔记】
#include "apue.h" #include <fcntl.h> #define RWRWRW (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP ...