折半搜索,map会T所以用hash表来存状态

#include<iostream>
#include<cstdio>
#include<map>
using namespace std;
const int N=10,mod=739391;
int n,m,k[N],p[N],w,a[155][N],h[1000005],cnt;
long long ans;
map<int,int>mp;
struct qwe
{
int ne,to,va;
}e[4000005];
void update(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod,fl=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
{
e[i].va++;//cerr<<e[i].va<<endl;
fl=1;
break;
}
if(!fl)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=x;
e[cnt].va=1;
h[u]=cnt;
}
}
int ques(int x)
{//cerr<<x<<endl;
int u=(x%mod+mod)%mod;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to==x)
return e[i].va;
return 0;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=r*a;
a=a*a;
b>>=1;
}
return r;
}
void dfs(int w,int v)
{
if(!w)
{
update(v);
return;
}
for(int i=1;i<=m;i++)
dfs(w-1,v+k[w]*a[i][w]);
}
void dfs2(int w,int v)
{
if(!w)
{
ans+=ques(-v);
return;
}
for(int i=1;i<=m;i++)
dfs2(w-1,v+k[n-w+1]*a[i][n-w+1]);
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d%d",&k[i],&p[i]);
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
a[i][j]=ksm(i,p[j]);
int w=n/2;
dfs(w,0);
dfs2(n-w,0);
printf("%lld\n",ans);
return 0;
}

poj 1186 方程的解数【折半dfs+hash】的更多相关文章

  1. POJ 1186 方程的解数

    方程的解数 Time Limit: 15000MS   Memory Limit: 128000K Total Submissions: 6188   Accepted: 2127 Case Time ...

  2. 计蒜客 方程的解数(DFS)

    问题描述 输出格式 输出一行,输出一个整数,表示方程的整数解的个数. 样例输入 - 样例输出 #include <stdio.h> #include <string.h> #i ...

  3. Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)

    目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...

  4. 计蒜客 方程的解数 dfs

    题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...

  5. NOI2001 方程的解数

    1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛  时间限制: 5 s  空间限制: 64000 KB     题目描述 Descripti ...

  6. [ NOI 2001 ] 方程的解数

    \(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...

  7. cogs 304. [NOI2001] 方程的解数(meet in the middle)

    304. [NOI2001] 方程的解数 ★★☆   输入文件:equation1.in   输出文件:equation1.out   简单对比时间限制:3 s   内存限制:64 MB 问题描述 已 ...

  8. P5691 [NOI2001]方程的解数

    题意描述 方程的解数 求方程 \(\sum_{i=1}^{n}k_ix_i^{p_i}=0(x_i\in [1,m])\) 的解的个数. 算法分析 远古 NOI 的题目就是水 类似于这道题. 做过这道 ...

  9. CH 2401 - 送礼 - [折半DFS+二分]

    题目链接:传送门 描述 作为惩罚,GY被遣送去帮助某神牛给女生送礼物(GY:貌似是个好差事)但是在GY看到礼物之后,他就不这么认为了.某神牛有N个礼物,且异常沉重,但是GY的力气也异常的大(-_-b) ...

随机推荐

  1. 杭电1708Fibonacci String

    Fibonacci String Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  2. 将世界坐标转成NGUI坐标

    将世界坐标转成NGUI坐标,这个中间须要一个屏幕坐标,可參考例如以下代码: /// <summary> /// 将世界坐标转成UI坐标 /// </summary> /// & ...

  3. java开始到熟悉61

    本此主题:多维数组----矩阵运算 矩阵的运算规则是将对应位置的值进行运算,如上图所示. package array; public class Matrix { /** * 打印矩阵 * @para ...

  4. fill函数和fill_n函数

    fill_n函数的作用是:给你一个起始点,然后再给你一个数值count和val.把从起始点开始依次赋予count个元素val的值. 注意: 不能在没有元素的空容器上调用fill_n函数 列子:     ...

  5. 算法和流程控制 --《高性能JavaScript》

    总结: 1.for, while, do-while循环性能相当,并没有一种循环类型明显快于或满于其他类型. 2.避免使用for-in循环,除非要遍历一个属性数量未知的对象. 3.改善循环性能的最佳形 ...

  6. React Native安装

    1.安装 1.1 安装Node.js 下载安装即可 1.2 安装Homebrew 终端中执行: $ /usr/bin/ruby -e "$(curl -fsSL https://raw.gi ...

  7. ADO直接调用ACESS数据库MDB

    1.ADO用ODBC链接不会出现堆栈溢出. 2.直接用ADO链接,因为对象不是NEW出来的,导致其成员变量也是栈上的,数组申请过大,栈溢出. 用VECTOR或者NEW对象,应该能解决.

  8. 增加实时性的异常url检测

    技能点: 搭建服务器.restfulapi 在py脚本中调取另一个脚本执行

  9. proc_create的使用方法

    proc_create的使用方法 proc文件系统是个有用的东东.创建一个proc虚拟文件,应用层通过读写该文件,即可实现与内核的交互.proc虚拟文件是如何创建的呢? 先看看比较简单的,创建proc ...

  10. umask文件屏蔽字的使用【学习笔记】

    #include "apue.h" #include <fcntl.h> #define RWRWRW (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP ...