一题非常简单的最短路题目,但是我就是很撒比的错在了,1.初始化;2.判断重边

堆优化,使用优先队列的堆优化;复杂度:O(ElogE);

#include <stdio.h>
#include <iostream>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <queue>
#include <set>
#include <stack>
#include <algorithm>
using namespace std;
#define PI acos(-1.0)
#define INF 0x3f3f3f3f
#define INH 0x3f3f3f3f
#define N 1010
int dis[N];
int a[N][N];
int vis[N];
int n;
void init()//初始化i->i为0,i->j为INF
{
int i,j;
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(i==j)
a[i][j]=0;
else
a[i][j]=INF;
}
}
} void dijs()
{
int i,j;
memset(vis,0,sizeof(vis));
int k;
for(i=1;i<=n;i++)
{
dis[i]=a[1][i];
}
vis[1]=1;
dis[1]=0;
for(i=1;i<=n-1;i++)
{
int mimi=INF;
k=0;
for(j=1;j<=n;j++)
{
if(mimi>dis[j]&&!vis[j])
{
mimi=dis[j];
k=j;
}
}
vis[k]=1;
for(j=1;j<=n;j++)
{
if(dis[j]>(dis[k]+a[k][j])&&!vis[j]&&a[k][j]!=INF)
{
dis[j]=dis[k]+a[k][j];
}
}
}
}
int main()
{
int j,i,t;
while(~scanf("%d%d",&t,&n))
{
int u,v,w;
init(); for(i=0;i<t;i++)
{
scanf("%d%d%d",&u,&v,&w);
if(a[u][v]>w) //判断重边
a[u][v]=a[v][u]=w;
}
dijs();
printf("%d\n",dis[n]);
}
return 0;
}

dijkstra算法的应用(poj2387)+堆优化【还没学C艹很尴尬,不理解的先不写了,未完,待续...】的更多相关文章

  1. Dijkstra算法的二叉堆优化

    Dijkstra算法的二叉堆优化 算法原理 每次扩展一个距离最小的点,再更新与其相邻的点的距离. 如何寻找距离最小的点 普通的Dijkstra算法的思路是直接For i: 1 to n 优化方案是建一 ...

  2. 最短路径——Dijkstra算法以及二叉堆优化(含证明)

    一般最短路径算法习惯性的分为两种:单源最短路径算法和全顶点之间最短路径.前者是计算出从一个点出发,到达所有其余可到达顶点的距离.后者是计算出图中所有点之间的路径距离. 单源最短路径 Dijkstra算 ...

  3. 在 Prim 算法中使用 pb_ds 堆优化

    在 Prim 算法中使用 pb_ds 堆优化 Prim 算法用于求最小生成树(Minimum Spanning Tree,简称 MST),其本质是一种贪心的加点法.对于一个各点相互连通的无向图而言,P ...

  4. 堆学习笔记(未完待续)(洛谷p1090合并果子)

    上次讲了堆,别人都说极其简单,我却没学过,今天又听dalao们讲图论,最短路又用堆优化,问懂了没,底下全说懂了,我???,感觉全世界都会了堆,就我不会,于是我决定补一补: ——————来自百度百科 所 ...

  5. Dijkstra算法(朴素实现、优先队列优化)

    Dijkstra算法只能求取边的权重为非负的图的最短路径,而Bellman-Ford算法可以求取边的权重为负的图的最短路径(但Bellman-Ford算法在图中存在负环的情况下,最短路径是不存在的(负 ...

  6. AcWing 850. Dijkstra求最短路 II 堆优化版 优先队列 稀疏图

    //稀疏图 点和边差不多 #include <cstring> #include <iostream> #include <algorithm> #include ...

  7. 《Java虚拟机JVM故障诊断与性能优化》读书笔记(未完待续)

    前言: 对于JVM学习用处的理解:我们程序员写的代码,虽说是放在服务器(linux)系统上的.但是很多时候,受JVM的影响,其实程序并没有发挥出服务器的最大性能.这时候,JVM就成为了瓶颈了.有瓶颈就 ...

  8. MySQL优化篇(未完待续)

    一.优化SQL语句的一般步骤 1.通过 show status命令了解各种sql的执行频率 mysql客户端连接成功后,通过show[session|global] status命令,可以查看服务器的 ...

  9. VINS(九)Ceres Solver优化(未完待续)

    使用Ceres Solver库处理后端优化问题,首先系统的优化函数为

随机推荐

  1. 子组件跟随父组件re-render

    想象一下这种场景,一个父组件下面一大堆子组件.然后呢,这个父组件re-render.是不是下面的子组件都得跟着re-render.可是很多子组件里面是冤枉的啊!!很多子组件的props 和 state ...

  2. Java线程池 ExecutorService

    一.ExecutorService介绍 ExecutorService是Java中对线程池定义的一个接口,它java.util.concurrent包中,在这个接口中定义了和后台任务执行相关的方法:  ...

  3. 通达OA 一些工作流调整后带来的后果及应对措施

    近期单位有个工作流须要改动,原因是最早设计时控件的字段设计不规范,控件直接使用了人员的名字来命名了.这不使用手机訪问时就出问题了,名字会直接显示出来,如今就须要进行调整. 调整初步有两个方案: 一是全 ...

  4. 【转载】Socket通讯原理以及TCP、IP三次握手机制分析

    要写网络程序就必须用Socket,这是程序员都知道的.而且,面试的时候,我们也会问对方会不会Socket编程?一般来说,很多人都会说,Socket编程基本就是listen,accept以及send,w ...

  5. POJ 1151 HDU 1542 Atlantis(扫描线)

    题目大意就是:去一个地方探险,然后给你一些地图描写叙述这个地方,每一个描写叙述是一个矩形的右下角和左上角.地图有些地方是重叠的.所以让你求出被描写叙述的地方的总面积. 扫描线的第一道题,想了又想,啸爷 ...

  6. 用JAVA编写浏览器内核之实现javascript的document对象与内置方法

    原创文章.转载请注明. 阅读本文之前,您须要对浏览器怎样载入javascript有一定了解. 当然,对java与javascript本身也须要了解. 本文首先介绍浏览器载入并执行javascript的 ...

  7. 关于MP4视频拖动的原理与分析(一)

    本来想说说关于mp4和一些常见视频文件格式方面的历史. 如今想想没啥必要.毕竟本文是在讲关于mp4点播拖动方面的技术细节. 绪论,前言神马的显得有点多余. 说起MP4.不得不提"Digita ...

  8. VUE清除组件内部定时器

    定时器如果不手动清除,只会在离开当前页面或者F5刷新后才会清除.由于vue项目是SPA应用,离开当前组件后并不会清除定时器,所以需要我们手动去清除定时器.但当我们将清除定时器clearInterval ...

  9. Hadoop_stack_cmd

    HDFS命令基本格式:Hadoop fs -cmd < args > HDFS命令基本格式:Hadoop fs -cmd < args > ls 命令 hadoop fs -l ...

  10. web 前端冷知识

    前端已经被玩儿坏了!像console.log()可以向控制台输出图片等炫酷的玩意已经不是什么新闻了,像用||操作符给变量赋默认值也是人尽皆知的旧闻了,今天看到Quora上一个帖子,瞬间又GET了好多前 ...