BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$
枚举因数
$ans=\sum_{d<=n} F(d) * d$
$F(d)$表示给定范围内两两$\sum_{gcd(i,j)=d} i*j $
令$f(p)=Sum(\lfloor n/p \rfloor) Sum(\lfloor m/p \rfloor) * p^2$
那么 $f(i)=\sum_{i \mid n}F(n)$
反演得到$F(i)=\sum_{i \mid n} \mu(n/i) f(n)$
那么我们代入就得到了
$ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \frac {n}{i*d} \rfloor,\lfloor \frac {m}{i*d} \rfloor)$
然后外面分块一次,里面分块一次
时间复杂度$\Theta (n)$
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define inv 10050505LL
#define maxn 10000005
#define md 20101009LL int mu[maxn],pr[maxn],top=0;
ll ps[maxn];
bool vis[maxn]; int n,m; void init()
{
memset(vis,false,sizeof vis);
mu[1]=1;ps[1]=1;
F(i,2,n)
{
if (!vis[i]) mu[i]=-1,pr[++top]=i;
F(j,1,top)
{
if (pr[j]*i>n) break;
vis[pr[j]*i]=true;
if (i%pr[j]==0) {mu[i*pr[j]]=0;break;}
mu[i*pr[j]]=-mu[i];
}
ps[i]=(ps[i-1]+((ll)mu[i]*i*i))%md;
}
} ll sum(int n,int m)
{
n=((ll)n*(n+1)/2)%md;
m=((ll)m*(m+1)/2)%md;
return ((ll)n*m)%md;
} ll Function(int n,int m)
{
if (n>m) swap(n,m);
ll ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret=(ret+((sum(n/i,m/i))*(ps[last]-ps[i-1]+md)%md)%md)%md;
}
return ret;
} ll S(int n)
{
return ((1LL+n)*n/2)%md;
} ll solve(int n,int m)
{
if (n>m) swap(n,m);
ll ret=0;
for (int i=1,last=0;i<=n;i=last+1)
{
last=min(n/(n/i),m/(m/i));
ret=(ret+((ll)Function(n/i,m/i))*(S(last)-S(i-1))%md+md)%md;
}
return ret;
} int main()
{
scanf("%d%d",&n,&m);
if (n<m) swap(n,m);
init();
printf("%lld\n",solve(n,m));
}
BZOJ 2154 Crash的数字表格 ——莫比乌斯反演的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- Bzoj 2154: Crash的数字表格(积性函数)
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...
- 【刷题】BZOJ 2154 Crash的数字表格
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- ●BZOJ 2154 Crash的数字表格
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2154 题解: 莫比乌斯反演. 题意还是很清楚的,就不赘述了. 显然有 $ANS=\sum_{ ...
随机推荐
- bat 批处理测试局域网速度 两端电脑
C:\Users\Administrator>iperf3 iperf3: parameter error - must either be a client (-c) or server (- ...
- powershell 版本问题
Login-AzureRmAccount : 无法将“Login-AzureRmAccount”项识别为 cmdlet.函数.脚本文件或可运行程序的名称.请检查名称的拼写,如果包括路径,请确保路径正确 ...
- 解决Starting to watch source with Jekyll and Compass. Starting Rack on port 4000
问题 Starting to watch source with Jekyll and Compass. Starting Rack on port 4000 rake aborted! Errno: ...
- Vue 前端面试题[转]
https://mp.weixin.qq.com/s/Uxhx2dJ1Xbm6N3Gl7wNZNw Vue 前端面试题 游荡de蝌蚪 前端开发 1周前 作者:游荡de蝌蚪 https://segmen ...
- python自动化基础问题解析
(1)自动化代码中用到的设计模式: po模式(page object): 1.PO提供了一种业务流程与页面元素操作分离的模式,这使得测试代码变得更加清晰. 2.页面对象与用例分离,使得我们更好的复 ...
- Bootstrap-datepicker设置开始时间结束时间范围
$('.form_datetime').datepicker({ format: 'yyyy-mm-dd', weekStart: 1, startDate: '+1', endD ...
- IIS应用程序池"启用32位"导致服务不可用的503错误
原来运行正常的站点,突然不正常了,出现503错误.查看操作系统的日志查看器显示: 由于配置问题,无法加载模块 DLL“C:\Program Files (x86)\IIS\Asp.Net Core M ...
- Vue-Quill-Editor 富文本编辑器的使用
步骤如下: 1.下载Vue-Quill-Editor npm install vue-quill-editor --save 2.下载quill(Vue-Quill-Editor需要依赖) npm i ...
- 摘抄 Promise原理
1.简单的promise: //极简promise雏形 function Promise(fn){ var value = null; callbacks = [];//callback为数组,因为可 ...
- JS数组专题2️⃣ ➖ 数组去重
距离上次发文,已经有一段时间了,最近工作比较忙,这不眼看快双十一了,就相当于给大家一些福利吧! 一.什么是数组去重 简单说就是把数组中重复的项删除掉,你 GET 到了吗 ?下面我将简单介绍下几种基本的 ...