洛谷 [P1290] 欧几里得的游戏
SG函数的应用
看到这题就想到了SG函数
那么可以考虑最终情况:一个数是x,另一个是0,那么先手必败(因为上一个人已经得到0了,其实游戏已经结束了)
剩下的情况:一个数n, 一个数m,假设n>m
那么根据题意,SG(n,m)=mex{SG(n - m, m), SG(n - 2m, m), ......, SG(m, n%m)(此处交换了顺序,因为 m>n%m )}
考虑里面的SG怎么求。
可以发现,SG(n-m, m)=mex{SG(n-2m, m), SG(n-3m, m)........SG(m, n%m)}
SG(n- 2m, m)同理
所以除了SG(m, n%m)以外的SG都可以由SG(m, n%m)得来
假设SG(m, n%m)0,设n/m=k, SG(n-(k-1)*m,m)mex{SG(m, n%m)}=1
从此往上一直到SG(n, m)的值为2,3,4,5...,即一直必胜,简单记为1
如果SG(m, n%m)1, 那么 SG(n-(k-1)*m,m)mex{SG(m, n%m)}=0
剩下的依旧为2,3,4,5,6...,也可记为1
那么可以看出,如果n/m==1,SG(n, m)=!SG(m, n%m),不然是1
这是一个标准的辗转相除的一个递推式,用GCD的写法即可实现
归纳一下用SG函数解决博弈问题的一般步骤:
- 找到终止状态
- 找出任意一个状态,并把它的SG的值用它的后继表示
- 化简SG之间的关系,递归求解
直观的理解一下本题
首先题目的描述让我们感觉本题与GCD肯定有某些联系
我们发现如果在一个人的手里, \(a > 2b\) 那么这个人必胜,因为他可以选择是在自己进入下一步,还是对手进入下一步
所以第一个出现这个情况的人必胜,如果始终都没有这种情况,就GCD计数
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
using namespace std;
int init() {
int rv = 0, fh = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') fh = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
rv = (rv<<1) + (rv<<3) + c - '0';
c = getchar();
}
return fh * rv;
}
int n, a, b;
bool SG(int a, int b) {
if(!b) return 0;
if(a / b == 1) return !SG(b, a % b);
return 1;
}
int main() {
freopen("in.txt", "r", stdin);
n = init();
for(int i = 1 ; i <= n ; i++) {
a = init(); b = init();
if(SG(max(a, b), min(a, b))) {
printf("Stan wins\n");
}else printf("Ollie wins\n");
}
fclose(stdin);
return 0;
}
洛谷 [P1290] 欧几里得的游戏的更多相关文章
- 洛谷P1290 欧几里得的游戏
题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...
- Luogu P1290 欧几里得的游戏/UVA10368 Euclid's Game
Luogu P1290 欧几里得的游戏/UVA10368 Euclid's Game 对于博弈论的题目没接触过多少,而这道又是比较经典的SG博弈,所以就只能自己来推关系-- 假设我们有两个数$m,n$ ...
- 【洛谷P2584】【ZJOI2006】GameZ游戏排名系统题解
[洛谷P2584][ZJOI2006]GameZ游戏排名系统题解 题目链接 题意: GameZ为他们最新推出的游戏开通了一个网站.世界各地的玩家都可以将自己的游戏得分上传到网站上.这样就可以看到自己在 ...
- 洛谷P1290欧几里德游戏
题目地址 题目大意: 两个人st和ol博弈 有两个整数n,m 每次轮到一个人时候,需要选择用大的那个数减去小的那个数的倍数(不能减为负数) 最后得到0的为胜利者 思路: (以下讨论均在n<m的条 ...
- 【洛谷3345_BZOJ3924】[ZJOI2015]幻想乡战略游戏(点分树)
大概有整整一个月没更博客了 -- 4 月为省选爆肝了一个月,最后压线进 B 队,也算给 NOIP2018 翻车到 316 分压线省一这个折磨了五个月的 debuff 画上了一个不算太差的句号.结果省选 ...
- BZOJ5285 & 洛谷4424 & UOJ384:[HNOI/AHOI2018]寻宝游戏——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5285 https://www.luogu.org/problemnew/show/P4424 ht ...
- AC日记——欧几里得的游戏 洛谷 P1290
题目描述 欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的.给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数 ...
- 洛谷P3052 [USACO12MAR]摩天大楼里的奶牛 [迭代加深搜索]
题目传送门 摩天大楼里的奶牛 题目描述 A little known fact about Bessie and friends is that they love stair climbing ra ...
- 洛谷P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper
P3052 [USACO12MAR]摩天大楼里的奶牛Cows in a Skyscraper 题目描述 A little known fact about Bessie and friends is ...
随机推荐
- vue 动态合并单元格、并添加小计合计功能
1.效果图 2.后台返回数据格式(平铺式) 3.后台返回数据后,整理所需要展示的属性存储到(items)数组内 var obj = { "id": curItems[i].id, ...
- shell脚本,tee小工具的用法。
解释: tee是个工具 , 它的作用就是把标准输出,复制一份,扔文件里 ,原标准输出还输出,-a就相当于 >> 追加到文件里的意思. 不加就是 > 重定向到文件里去.
- 新浪oAuth授权
首先要拥有一个微博账号 第一步 成为新浪开发者 1.登录微博开发者界面 open.weibo.com 2. 点击登录 点击移动应用,创建应用 3.需要进行开发者认证,填写个人信息及邮箱认证,等 ...
- 【贪心优化dp决策】bzoj1571: [Usaco2009 Open]滑雪课Ski
还有贪心优化dp决策的操作…… Description Farmer John 想要带着 Bessie 一起在科罗拉多州一起滑雪.很不幸,Bessie滑雪技术并不精湛. Bessie了解到,在滑雪场里 ...
- 关于PHP版本比较函数version_compare的问题
$version1="v4.0"; $version2="v4.0.0"; print_r(version_compare($version1,$version ...
- (63)zabbix low-level discover zabbix批量部署必备
1. 概述 <zabbix发现配置>server通过配置好的规则,自动添加host.group.template <zabbix Active agent自动注册>与disco ...
- 重置windows用户漫游配置文件
1.备份用户数据 2.删除或修改漫游配置文件 3.用户PC管理员登陆,删除本地用户缓存文件 注册表打开: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows N ...
- rom bist scripts
rom bist 的input 有rom_content file .校验rom还坏,主要通过signature比较.signature跟rom content file 一一对应的. rom bis ...
- linux系统,python3.7环境安装talib过程
获取源码wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz 解压进入目录tar -zxvf ta-lib-0. ...
- Python中如何将数据存储为json格式的文件(续)
将上一篇中的例子,修改一下,将两个程序合二为一,如果存储了用户喜欢的水果就显示它,否则提示用户输入他喜欢的水果并将其存储到文件中. favorite.py import json filename = ...