The Contest

直接粗暴贪心 略过

#include<bits/stdc++.h>
using namespace std;
int main()
{//freopen("t.txt","r",stdin);
long long int n,sum=0,k;
scanf("%lld",&n);
for(int i=0;i<n;i++)
{
scanf("%lld",&k);
sum+=k;
}
scanf("%lld",&k);
long long int l,r;
for(int i=0;i<k;i++)
{
scanf("%lld%lld",&l,&r);
if(sum<=r){printf("%lld\n",max(sum,l));return 0;}
}
printf("-1\n");
return 0;
}

The Golden Age

由于指数增长速度极快 直接用一个平衡树遍历即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long int LL;
const LL N=1e18+1;
LL x[100],y[100];
map<LL,LL>s;
int main()
{//freopen("t.txt","r",stdin);
LL l,r;
s.clear();
scanf("%lld%lld%lld%lld",&x[1],&y[1],&l,&r);
x[0]=y[0]=1;
for(int i=2;i<100&&x[i-1]*x[1]<=N&&x[i-1]<=(N/x[1])&&x[i-1]*x[1]>=0&&(!(x[i-1]>1e+9&&x[1]>1e+9));i++)
x[i]=x[i-1]*x[1];
for(int i=2;i<100&&y[i-1]*y[1]<=N&&y[i-1]<=(N/y[1])&&y[i-1]*y[1]>=0&&(!(y[i-1]>1e+9&&y[1]>1e+9));i++)
y[i]=y[i-1]*y[1];
for(int a=0;x[a]<=N&&x[a]!=0;a++)
for(int b=0;y[b]<=N&&y[b]!=0;b++ )
{
//if(a==b)continue;
if(x[a]<0||y[b]<0)continue;
if(x[a]+y[b]<=r&&x[a]+y[b]>=l&&s.count(x[a]+y[b])==0)s[x[a]+y[b]]=1;
}
map<LL,LL>::iterator it,ipt;
LL ans=0,len=0;
s[l-1]=s[r+1]=1;
it=s.begin();
ipt=s.begin();
it++;
for(;it!=s.end();it++,ipt++)
{
//cout<<it->first<<" "<<ipt->first<<endl;
ans=max(ans,it->first-ipt->first-1);
}
printf("%lld\n",ans);
return 0;
}

  

The Tag Game

很简单的贪心 Bob总是要前往最深的节点(在不撞到Alice的前提下)

遍历一下即可

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+1;
int fa[N],dep[N],len[N];
vector<int>adj[N];
int n,x;
int dfs(int cur,int father,int lens)
{
dep[cur]=lens;
len[cur]=0;
fa[cur]=father;
for(int i=0;i<adj[cur].size();i++)
{
int ne=adj[cur][i];
if(ne==father)continue; len[cur]=max(len[cur],dfs(ne,cur,lens+1));
}
return len[cur]+1;
}
int main()
{//freopen("t.txt","r",stdin);
scanf("%d%d",&n,&x);
int a,b;
for(int i=0;i<n;i++)
{
scanf("%d%d",&a,&b);
adj[a].push_back(b);
adj[b].push_back(a);
}
fa[1]=0;
dfs(1,0,0);
int ll=0;
int ans=dep[x]+len[x];
while((x=fa[x])!=0)
{
ll++;
if(dep[x]<=ll)break;
ans=max(ans,dep[x]+len[x]);
}
printf("%d\n",ans*2);
return 0;
}

Two Melodies

O(n^2)的dp 设dp[i][j]为 第一个Melody在i处结束 第二个Melody在j处结束 显然有 dp[i][j]=dp[j][i]

具体转移方法看代码吧 很清晰

# include <iostream>
#include<bits/stdc++.h>
using namespace std;
long long i,j,n,mx,a[5009],b[5009][5009],x[9],y[100009];
int main()
{
cin>>n;
for (i=1;i<=n;i++) cin>>a[i];
for (i=0;i<=n;i++)
{
for (j=0;j<=7;j++) x[j]=0;
for (j=1;j<=n;j++) y[a[j]]=0;
for (j=1;j<i;j++)
{
x[a[j]%7]=max(x[a[j]%7],b[i][j]);
y[a[j]]=max(y[a[j]],b[i][j]);
}
for (j=i+1;j<=n;j++)
{
b[i][j]=max(max(y[a[j]+1],y[a[j]-1]),max(x[a[j]%7],b[i][0]))+1;
b[j][i]=b[i][j];
x[a[j]%7]=max(x[a[j]%7],b[i][j]);
y[a[j]]=max(y[a[j]],b[i][j]);
mx=max(mx,b[i][j]);
}
}
cout<<mx;
}

  

Army Creation

技巧性很强的一道线段树题

我们首先考虑解决一个问题:对于某个士兵,它有可能对哪个区间造成超员?

假设该士兵的位置是d 对于同种类的士兵 往前数k个的位置的士兵 它的位置是b 那么对于区间【1,b】 位置d的士兵会造成他们超员

用线段树可以在对数时间内解决第一个问题。

那么对于题中询问[L,R] 我们只要统计使得区间[L,R]可能超员的士兵 位置小于等于R的个数即可。

总的复杂度 O(nlog^2n)

不过这个代码写的和一般的线段树还不太一样

#include<bits/stdc++.h>
using namespace std; const int Maxn = 100005;
const int Maxm = 524288; int n, k;
int a[Maxn];
vector <int> I[Maxn];
vector <int> st[Maxm];
int q;
int res; void Insert(int v, int l, int r, int a, int b, int val)
{
if (l == a && r == b) st[v].push_back(val);
else {
int m = l + r >> 1;
if (a <= m) Insert(2 * v, l, m, a, min(m, b), val);//重复添加
if (m + 1 <= b) Insert(2 * v + 1, m + 1, r, max(m + 1, a), b, val);
}
} int Get(int v, int l, int r, int x, int R)
{
int res = upper_bound(st[v].begin(), st[v].end(), R) - st[v].begin();
if (l < r) {
int m = l + r >> 1;
if (x <= m) res += Get(2 * v, l, m, x, R);//避免重复计算
else res += Get(2 * v + 1, m + 1, r, x, R);
}
return res;
} int main()
{
scanf("%d %d", &n, &k);
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
I[a[i]].push_back(i);
if (I[a[i]].size() > k) Insert(1, 1, n, 1, I[a[i]][I[a[i]].size() - k - 1], i);
}
scanf("%d", &q);
while (q--) {
int x, y; scanf("%d %d", &x, &y);
x = (x + res) % n + 1;
y = (y + res) % n + 1;
if (x > y) swap(x, y);
res = (y - x + 1) - Get(1, 1, n, x, y);
printf("%d\n", res);
}
return 0;
}

  

Bipartite Checking

很具有扩展性的一道题 可以联想到很多问题

官方题解很详细 直接引用

简单概述一下:我们转化问题 对于每条边 我们考虑它覆盖了那些询问 比如对于第i个询问 我们只需要考虑覆盖了它的边即可。

用分治法dfs的时候 我们需要添加边,可以简单做到,删除边该怎么做呢? 把图的信息当作一个栈回溯即可。(分治的过程满足后进先出的性质,所以可以用栈)

复杂度不高,但是常数真的大。

下面引用原文。

If the edges were only added and not deleted, it would be a common problem that is solved with disjoint set union. All you need to do in that problem is implement a DSU which maintains not only the leader in the class of some vertex, but also the distance to this leader. Then, if we try to connect two vertices that have the same leader in DSU and the sum of distances to this leader is even, then we get a cycle with odd length, and graph is no longer bipartite.

But in this problem we need to somehow process removing edges from the graph.

In the algorithm I will describe below we will need to somehow remove the last added edge from DSU (or even some number of last added edges). How can we process that? Each time we change some variable in DSU, we can store an address of this variable and its previous value somewhere (for example, in a stack). Then to remove last added edge, we rollback these changes — we rewrite the previous values of the variables we changed by adding the last edge.

Now we can add a new edge and remove last added edge. All these operations cost (O(logn)) because we won't use path compression in DSU — path compression doesn't work in intended time if we have to rollback. Let's actually start solving the problem.

For convinience, we change all information to queries like "edge (x, y) exists from query number l till query number r". It's obvious that there are no more than q such queries. Let's use divide-and-conquer technique to make a function that answers whether the graph is bipartite or not after every query from some segment of queries [a, b]. First of all, we add to DSU all the edges that are present in the whole segment (and not added yet); then we solve it recursively for  and ; then we remove edges from DSU using the rollback technique described above. When we arrive to some segment [a, a], then after adding the edges present in this segment we can answer if the graph is bipartite after query a. Remember to get rid of the edges that are already added and the edges that are not present at all in the segment when you make a recursive call. Of course, to solve the whole problem, we need to call our function from segment [1, q].

Time complexity is , because every edge will be added only in  calls of the function.

#include<iostream>
#include<cstdio>
#include<map>
#define N 500005
using namespace std;
int n,m,T,fa[N],top,st[N<<2],a[N];
struct E{int x,y,l,r;}e[N];
int Getfa(int x)
{
while (fa[x]!=x) x=fa[x];
return x;
}
int col(int x)//??????
{
int now=0;
while (fa[x]!=x) now^=a[x],x=fa[x];//???????????????
return now;
}
void link(int x,int y,int D)
{ fa[x]=y;a[x]=D;st[++top]=x;
}
void RE(int t)
{
for (;top>t;top--)
fa[st[top]]=st[top],a[st[top]]=0;
}
void work(int l,int r,int k)
{
// cout<<l<<r<<k<<endl;
int mid=(l+r)>>1,now=top;
for (int i=1;i<=k;i++)
if (e[i].l<=l&&r<=e[i].r)//????????????
{ int u=Getfa(e[i].x),v=Getfa(e[i].y);
if (u!=v) link(u,v,col(e[i].x)==col(e[i].y));
else if (col(e[i].x)==col(e[i].y))
{
for(int i=l;i<=r;i++)puts("NO");
RE(now);return;
}
swap(e[k--],e[i--]);
}
if (l==r) puts("YES");
else
{
int i,j;
for (i=1,j=0;i<=k;i++)
if(e[i].l<=mid)swap(e[i],e[++j]);//?????? ??
work(l,mid,j);
for (i=1,j=0;i<=k;i++)
if(e[i].r>mid)swap(e[i],e[++j]);
work(mid+1,r,j);
}
RE(now);//??
}
map<int,int>M[N];
int main()
{ scanf("%d%d",&n,&T);
for (int i=1;i<=T;i++)
{
int x,y;
scanf("%d%d",&x,&y);
if (x>y) swap(x,y);
if (M[x][y]) e[M[x][y]].r=i-1,M[x][y]=0;
else
{
M[x][y]=++m;
e[m].x=x;e[m].y=y;e[m].l=i-1;e[m].r=T;
}
}
for (int i=1;i<=m;i++)
{
// scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].l,&e[i].r);
if (++e[i].l>e[i].r) i--,m--;
}
for (int i=1;i<=n;i++)fa[i]=i;
work(1,T,m);
return 0;
}

  

  

Educational Codeforces Round 22 补题 CF 813 A-F的更多相关文章

  1. Educational Codeforces Round 27 补题

    题目链接:http://codeforces.com/contest/845 A. Chess Tourney 水题,排序之后判断第n个元素和n+1个元素是不是想等就可以了. #include < ...

  2. Educational Codeforces Round 23 补题小结

    昨晚听说有教做人场,去补了下玩. 大概我的水平能做个5/6的样子? (不会二进制Trie啊,我真菜) A. 傻逼题.大概可以看成向量加法,判断下就好了. #include<iostream> ...

  3. cordforce Educational Codeforces Round 47 补题笔记 <未完>

    题目链接 http://codeforces.com/contest/1009 A. Game Shopping 直接模拟即可,用了一个队列来存储账单 #include <iostream> ...

  4. Educational Codeforces Round 12补题 经典题 再次爆零

    发生了好多事情 再加上昨晚教育场的爆零 ..真的烦 题目链接 A题经典题 这个题我一开始推公式wa 其实一看到数据范围 就算遍历也OK 存在的问题进制错误 .. 思路不清晰 两个线段有交叉 并不是端点 ...

  5. Educational Codeforces Round 22 E. Army Creation

    Educational Codeforces Round 22 E. Army Creation 题意:求区间[L,R]内数字次数不超过k次的这些数字的数量的和 思路:和求区间内不同数字的数量类似,由 ...

  6. Educational Codeforces Round 22 E. Army Creation(分块好题)

    E. Army Creation time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  7. 【Educational Codeforces Round 22】

    又打了一场EDU,感觉这场比23难多了啊…… 艹还是我太弱了. A. 随便贪心一下. #include<bits/stdc++.h> using namespace std; ,ans=- ...

  8. Educational Codeforces Round 22 E. Army Creation 主席树 或 分块

    http://codeforces.com/contest/813/problem/E 题目大意: 给出长度为n的数组和k,  大小是1e5级别. 要求在线询问区间[l, r]权值,  权值定义为对于 ...

  9. Educational Codeforces Round 22 B. The Golden Age(暴力)

    题目链接:http://codeforces.com/contest/813/problem/B 题意:就是有一个数叫做不幸运数,满足题目的 n = x^a + y^b,现在给你一个区间[l,r],让 ...

随机推荐

  1. 八数码难题 双向搜索(codevs 1225)

    题目描述 Description Yours和zero在研究A*启发式算法.拿到一道经典的A*问题,但是他们不会做,请你帮他们.问题描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字 ...

  2. C#.net中当地址有中文时,图片无法显示解决方法

    原文发布时间为:2008-11-05 -- 来源于本人的百度文章 [由搬家工具导入] 搞了半天都无法正常显示图片, string path = Server.MapPath("." ...

  3. Es首页

    https://www.elastic.co/guide/en/elasticsearch/reference/index.html

  4. [Poj1185][Noi2001]炮兵阵地(状压dp)

    炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 29476   Accepted: 11411 Descriptio ...

  5. java 基础 1 final关键字

    1. final关键字 数据:声明数据为常量,对于基本类型final使数值不变,对于引用类型final使引用不变,但引用所指向的值是可以改变的,例如       final StringBuffer ...

  6. IE浏览器不能上传图片

    这时将弹出一个“安全设置-Internet选项”对话框,把右侧滚动条慢慢地往下拉. 找到“其他/将文件上载到服务器包含本地目录路径”点击下面的“启用”功能

  7. spring mvc 选中多文件同时上传(利用input元素的multiple属性)

    原文:http://m.blog.csdn.net/article/details?id=51351388 <!DOCTYPE html> <html> <head> ...

  8. 扫描控件Web在线Applet

    基于JAVAEE的B/S架构由于java语言的跨平台性 所以操控Window客户端资源能力有限, 目前比较流行是用其他语言如Delphi,VB,C++开发客户端控件 然后再html中用js调用.    ...

  9. linux设备驱动归纳总结

    前言: (总结已经基本写完,这段时间我会从新排版和修正.错误总会有的,望能指正!) 前段时间学习了嵌入式驱动,趁着没开始找工作,这段时间我会每天抽出时间来复习. 我的总结是根据学习时的笔记(李杨老师授 ...

  10. 【stl学习笔记】set、multiset

    set和multiset会根据特定的排序准则,自动将元素排序.两者不同处在于multiset允许元素重复而set不允许 在使用set或multiset之前,必须先加入头文件<set> se ...