E - Dominant Indices CodeForces - 1009F

You are given a rooted undirected tree consisting of nn vertices. Vertex 11 is the root.

Let's denote a depth array of vertex xx as an infinite sequence [dx,0,dx,1,dx,2,…][dx,0,dx,1,dx,2,…], where dx,idx,i is the number of vertices yy such that both conditions hold:

  • xx is an ancestor of yy;
  • the simple path from xx to yy traverses exactly ii edges.

The dominant index of a depth array of vertex xx (or, shortly, the dominant index of vertex xx) is an index jj such that:

  • for every k<jk<j, dx,k<dx,jdx,k<dx,j;
  • for every k>jk>j, dx,k≤dx,jdx,k≤dx,j.

For every vertex in the tree calculate its dominant index.

Input

The first line contains one integer nn (1≤n≤1061≤n≤106) — the number of vertices in a tree.

Then n−1n−1 lines follow, each containing two integers xx and yy (1≤x,y≤n1≤x,y≤n, x≠yx≠y). This line denotes an edge of the tree.

It is guaranteed that these edges form a tree.

Output

Output nn numbers. ii-th number should be equal to the dominant index of vertex ii.

Examples

Input
4
1 2
2 3
3 4
Output
0
0
0
0
Input
4
1 2
1 3
1 4
Output
1
0
0
0
Input
4
1 2
2 3
2 4
Output
2
1
0
0 题意:对于每一个节点x,可以定义一个深度数组[dx0,dx1,dx2,…dxh],代表着以节点x为根往下计算,深度为h的那层的节点的数量。
对于每一个节点x,我们可以从深度数组中,选择一个主要索引下标j,作为他的代表。这个dj需要满足以下条件,他是所有dh中,最大的那个,如果有多个dh是一样的,都是最大的,那么选择j(即深度)最小的那个。
每层节点数的众数。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long LL;
const int maxn=1e6+;
int n,m;
int mx,big,id;
int deep[maxn],si[maxn],hson[maxn],cnt[maxn],ans[maxn];
vector<int>G[maxn]; void findhson(int x,int fa,int dep)//找到所有的重儿子
{
si[x]=;
deep[x]=dep;
int len=G[x].size();
for(int i=;i<len;i++)
{
int t=G[x][i];
if(t!=fa)
{
findhson(t,x,dep+);
si[x]+=si[t];
deep[t]=deep[x]+;
if(si[t]>si[hson[x]])
hson[x]=t;
}
}
}
void cal(int x,int fa,int val)
{
cnt[deep[x]]+=val;
if(cnt[deep[x]]>mx)
{
id=deep[x];
mx=cnt[deep[x]];
}
else if(cnt[deep[x]]==mx && deep[x]<id)
id=deep[x];
int len=G[x].size();
for(int i=;i<len;i++)
{
int t=G[x][i];
if(t!=fa && t!=big)
cal(t,x,val);
}
}
void dfs(int x,int fa,int flag)
{
int len=G[x].size();
for(int i=;i<len;i++)
{
int t=G[x][i];
if(t!=fa && t!=hson[x])
dfs(t,x,);
}
if(hson[x])
{
dfs(hson[x],x,);
big=hson[x];
}
cal(x,fa,);
big=;
ans[x]=id;
if(!flag)
{
cal(x,fa,-);
mx=;id=;
}
}
int main()
{
big=;mx=;id=;
scanf("%d",&n);
int x,y;
for(int i=;i<n;i++)
{
scanf("%d %d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
findhson(,,);
dfs(,,);
for(int i=;i<=n;i++)
printf("%d\n",ans[i]-deep[i]);
return ;
}

启发式合并CodeForces - 1009F的更多相关文章

  1. 启发式合并 CodeForces - 600E

    启发式合并最重要的思想就是指的是每次将小集合拷贝合并至大集合.考虑每个元素的合并开销.对于合并次数最多的那个元素来说,它每合并一次,所在集合的规模扩大两倍,最多只会合并 logN 次,因而对于所有元素 ...

  2. Educational Codeforces Round 2 E. Lomsat gelral 启发式合并map

    E. Lomsat gelral Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/600/prob ...

  3. CodeForces 958F3 Lightsabers (hard) 启发式合并/分治 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8835443.html 题目传送门 - CodeForces 958F3 题意 有$n$个球,球有$m$种颜色,分 ...

  4. codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)

    codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...

  5. codeforces#1166F. Vicky's Delivery (Service并查集+启发式合并)

    题目链接: https://codeforces.com/contest/1166/problem/F 题意: 给出节点数为$n$,边数为$m$的图,保证每个点对都是互连的 定义彩虹路:这条路经过$k ...

  6. Codeforces 1455G - Forbidden Value(map 启发式合并+DP)

    Codeforces 题面传送门 & 洛谷题面传送门 首先这个 if 与 end 配对的结构显然形成一个树形结构,考虑把这棵树建出来,于是这个程序的结构就变为,对树进行一遍 DFS,到达某个节 ...

  7. codeforces 375D . Tree and Queries 启发式合并 || dfs序+莫队

    题目链接 一个n个节点的树, 每一个节点有一个颜色, 1是根节点. m个询问, 每个询问给出u, k. 输出u的子树中出现次数大于等于k的颜色的数量. 启发式合并, 先将输入读进来, 然后dfs完一个 ...

  8. Codeforces 965E Short Code 启发式合并 (看题解)

    Short Code 我的想法是建出字典树, 然后让后面节点最多的点优先向上移到不能移为止, 然后gg. 正确做法是对于当前的节点如果没有被占, 那么从它的子树中选出一个深度最大的点换到当前位置. 用 ...

  9. Codeforces - 600E 树上启发式合并

    题意:求每一个子树存在最多颜色的颜色代号和(可重复) 本题是离线统计操作,因此可以直接合并重儿子已达到\(O(nlogn)\)的复杂度 PS.不知道什么是启发式合并的可以这样感受一下:进行树链剖分,分 ...

随机推荐

  1. Java多线程系列七——ExecutorService

    java.util.concurrent.ExecutorService接口提供了许多线程管理的方法 Method 说明 shutdown 拒绝接收新的任务,待已提交的任务执行后关闭,且宿主线程不阻塞 ...

  2. HDU 3037 Saving Beans (数论,Lucas定理)

    题意:问用不超过 m 颗种子放到 n 棵树中,有多少种方法. 析:题意可以转化为 x1 + x2 + .. + xn = m,有多少种解,然后运用组合的知识就能得到答案就是 C(n+m, m). 然后 ...

  3. Swift4 扩张(Extenstion), 集合(Set)

    创建: 2018/03/09 完成: 2018/03/10 更新: 2018/04/19 修改小标题  [扩张的定义与使用协议] -> [通过扩张来采用协议] 更新: 2018/09/18 标题 ...

  4. E20170517-gg

    jaw  n. 下巴; 颌; indicator n. 指示器; gator  n. 短吻鳄; median  n. 中位数; 中线; [数] 中值;

  5. PHP中foreach有关引用的问题

    软件开发的过程中,细节处理非常重要,说得大一点就是细节决定成败,别人不懂的地方,你懂,别人没注意到的细节,你注意到了,这就是你胜出对方的地方,这样就体现出了你的价值. 下面是几个foreach循环中引 ...

  6. bzoj 5195: [Usaco2018 Feb]Directory Traversal【树形dp】

    注意到目录是一颗树结构,然后就简单了,预以1为根的处理出dis[u]为以这个点为根,到子树内的目录总长,si为子树内叶子数 第二遍dfs换根即可 #include<iostream> #i ...

  7. bzoj 4195: [Noi2015]程序自动分析【并查集】

    等于有传递性,所以hash一下把等于用并查集连起来,然后再判断不等于是否合法即可 #include<iostream> #include<cstdio> #include< ...

  8. bzoj 2337 [HNOI2011]XOR和路径【高斯消元+dp】

    首先,我们发现,因为是无向图,所以相连的点之间是有"依赖性"的,所以不能直接用dp求解. 因为是xor,所以按位处理,于是列线性方程组,设$ x[i] $为点i到n异或和为1的期望 ...

  9. [Usaco2009 Feb]庙会捷运Fair Shuttle

    Description 公交车一共经过N(1<=N<=20000)个站点,从站点1一直驶到站点N.K(1<=K<=50000)群奶牛希望搭乘这辆公交车.第i群牛一共有Mi(1& ...

  10. _bzoj1007 [HNOI2008]水平可见直线【单调栈】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1007 按斜率排序,去掉斜率相同时,截距较小的直线(即只保留该斜率下截距最大的直线).若当前直 ...