转自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

4.算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

Dijkstra算法——最短路径(转)的更多相关文章

  1. Dijkstra算法 - 最短路径算法

    2017-07-26 22:30:45 writer:pprp dijkstra算法法则:设置顶点集合S,首先将起始点加入该集合,然后根据起始点到其他顶点的路径长度, 选择路径长度最小的顶点加入到集合 ...

  2. Dijkstra算法 最短路径 (部分)

    void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum]) {     bool s[maxnum];       ...

  3. 经典树与图论(最小生成树、哈夫曼树、最短路径问题---Dijkstra算法)

    参考网址: https://www.jianshu.com/p/cb5af6b5096d 算法导论--最小生成树 最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树. im ...

  4. 邻接表实现Dijkstra算法以及DFS与BFS算法

    //============================================================================ // Name : ListDijkstr ...

  5. 求两点之间最短路径-Dijkstra算法

     Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...

  6. ACM: HDU 3790 最短路径问题-Dijkstra算法

    HDU 3790 最短路径问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Des ...

  7. python数据结构与算法——图的最短路径(Dijkstra算法)

    # Dijkstra算法——通过边实现松弛 # 指定一个点到其他各顶点的路径——单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, ...

  8. 最短路径问题——dijkstra算法

    仅谈谈个人对dijkstra的理解,dijkstra算法是基于邻接表实现的,用于处理单源最短路径问题(顺便再提一下,处理单源最短路径问题的还有bellman算法).开辟一个结构体,其变量为边的终点和边 ...

  9. 最短路径—Dijkstra算法

    Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Di ...

随机推荐

  1. android中ListView的定位:使用setSelectionFromTop

    如果一个ListView太长,有时我们希望ListView在从其他界面返回的时候能够恢复上次查看的位置,这就涉及到ListView的定位问题: 解决的办法如下: 1 2 3 4 5 6 7 // 保存 ...

  2. P2P实现的原理

    为了项目的后期IM应用,最近在研究libjingle,中间看了也收集了很多资料,感慨网上很多资料要么太过于纠结协议(如STUN.ICE等)实现细节,要么中间有很多纰漏.最后去伪存真,归纳总结了一下,希 ...

  3. Python学习-range的用法

    range() 函数的用法 range(start,end,step):可以参见已连串的数字,常与for循环配合使用 参数详解如下 start:开始创建的起始位置,默认为0 end:开始创建的结束位置 ...

  4. c++基础_特殊回文数

    #include <iostream> using namespace std; int main(){ int n; cin>>n; ;i<;i++){ int tem ...

  5. Spring 事物注解属性

    @Transactional属性 . propagation 事物的传播属性 . isolation 事物的隔离属性 . readonly 设置只读属性 . timeout 设置超时属性 . roll ...

  6. [luoguP1494] 岳麓山上打水 && [luoguP2744] [USACO5.3]量取牛奶Milk Measuring

    传送门 传送门 dfs选取集合,dp背包判断 虽然我觉的会TLE.. 但是的确是AC了 #include <cstdio> #include <cstring> #includ ...

  7. Spring boot data JPA数据库映射关系 : @OneToOne,@OneToMany,@ManyToMany

    问题描述 在利用Spring boot data JPA进行表设计的时候,表对象之间经常存在各种映射关系,如何正确将理解的映射关系转化为代码中的映射关系是关键之处. 解决办法 概念理解 举例:在公司的 ...

  8. Thinkphp5.0 视图view取值

    Thinkphp5.0 视图view取值 <!-- 获取控制器传递的变量 --> <li>{$age}</li> <!-- 获取服务器的信息 --> & ...

  9. hdu - 2645 find the nearest station (bfs水)

    http://acm.hdu.edu.cn/showproblem.php?pid=2645 找出每个点到距离最近的车站的距离. 直接bfs就好. #include <cstdio> #i ...

  10. Rikka with Phi 线段树

    Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds ...